
Lecture IV

Stationary Stokes and Navier-Stokes Equations

with Different Physical Boundary Conditions



Outline

I. Stokes Equations with Normal Boundary Conditions

II. Stokes Equations with Pressure and Tangential Boundary
Conditions

III. Oseen and Navier-Stokes Equations with Pressure and
Tangential Boundary Conditions



Introduction and motivation

We are interested by the following Stokes equations:

−∆u +∇π = f in Ω,

divu = 0 in Ω,

with the following nonhomogeneous boundary conditions:

u × n = g × n and π = π0 on Γ, (1)

or

u · n = g and curlu × n = h × n on Γ, (2)

or the following Navier boundary condition

u · n = g and 2 [D(u)n ]τ + αuτ = h , (3)



We will study also here the case of the Navier-Stokes equations:

Find u , π, α1, . . . , αI , with αi ∈ R


−∆u + u · ∇u +∇π = f and ∇ · u = 0 in Ω,

u × n = g × n on Γ,

π = π0 on Γ0 and π = π0 + αi on Γi, i = 1, . . . , I,



where we suppose that Ω is an open set possibly multiply
connected sufficiently regular with a boundary Γ possibly non

connected. We denote Γ =
I⋃
i=0

Γi with Γi the connected

components of Γ and Σ =
J⋃
j=1

Σj and Σj a finite number of cuts.

Ω◦ = Ω \
J⋃
j=1

Σj is simply connected.



Considering for example the case of the Stokes equations with the homogeneous
boundary conditions

(S0
T )

{
−∆u +∇π = f and div u = 0 in Ω,

u · n = 0, and curlu × n = 0 on Γ.

Because these boundary conditions, we write

−∆u = curl curlu −∇ div u

For the variational formulation, we will consider the following spaces:

V = {v ∈ L2(Ω), curl v ∈ L2(Ω), div v = 0, v · n = 0 on Γ},

We will prove later that the Stokes problem (S0
T ), with f ∈ L 6/5(Ω), u ∈ V and

π ∈ L2(Ω), is equivalent to{
Find u ∈ V such that

∀ v ∈ V ,
∫
Ω curlu · curl v dx =

∫
Ω f · v dx .



Questions:

Because u is apparently only in H 1(Ω), how to give a
sense to the following boundary condition

curlu × n = 0 on Γ ?

The bilinear form is it coercive to apply the Lax-Milgram
lemma ?

We know (see Lecture I) that if Ω is simply connected, we
have:

∀v ∈ V , ‖v‖H 1(Ω) ≤ C‖curl v‖L2(Ω).

What happens if Ω is not simply connected ?

Can we find generalized solution in W 1,p(Ω) with
1 < p <∞ ?

Can we find strong solution in W 2,p(Ω) with 1 < p <∞ ?

Can we find very weak solution in Lp(Ω) with 1 < p <∞ ?



II. Stokes problems with normal boundary
conditions
Consider the following Stokes problem:

(ST )


−∆u +∇π = f in Ω,

div u = 0 in Ω,

u · n = g, curlu × n = h × n on Γ,

〈u · n , 1〉Σj
= 0, 1 ≤ j ≤ J.

Lemma 2.1

Suppose that ψ ∈W 1,p(Ω). Then

curlψ · n = divΓ(ψ × n) in W−1/p,p(Γ).

Proof. To simplify, suppose p = 2. For any χ ∈ H2(Ω), Green formulas yield∫
Ω
curlψ · gradχ = 〈curlψ · n , χ〉Γ ,∫

Ω
curlψ · gradχ = −〈ψ × n , gradχ〉Γ

= 〈divΓ(ψ × n), χ〉Γ .



II. Stokes problems with normal boundary
conditions
Consider the following Stokes problem:

(ST )


−∆u +∇π = f in Ω,

div u = 0 in Ω,

u · n = g, curlu × n = h × n on Γ,

〈u · n , 1〉Σj
= 0, 1 ≤ j ≤ J.

Lemma 2.1

Suppose that ψ ∈W 1,p(Ω). Then

curlψ · n = divΓ(ψ × n) in W−1/p,p(Γ).

Proof. To simplify, suppose p = 2. For any χ ∈ H2(Ω), Green formulas yield∫
Ω
curlψ · gradχ = 〈curlψ · n , χ〉Γ ,∫

Ω
curlψ · gradχ = −〈ψ × n , gradχ〉Γ

= 〈divΓ(ψ × n), χ〉Γ .



Applying the divergence operator in Problem (ST ), we get
firstly

∆π = div f in Ω.

Setting then ψ = curlu , we have

−∆u = curlψ in Ω

and
−∆u · n = curlψ · n = (f −∇π) · n .

So formally the pressure satisfies the following Neumann
boundary condition:

∂ π

∂ n
= f · n − divΓ(h × n) on Γ

So, we can solve the pressure directly in the Stokes problem
(ST ).



Let us introduce the following space:

H r, p
0 (div, Ω) = {ϕ ∈ Lr(Ω); divϕ ∈ Lp(Ω), ϕ · n = 0 on Γ},

which is a Banach space for the norm

‖ϕ‖H r, p
0 (div,Ω) = ‖ϕ‖Lr(Ω) + ‖divϕ‖Lp(Ω).

We can prove that

D(Ω) is dense in H r, p
0 (div, Ω).

So its dual is then a subspace of D′(Ω) which can be
characterized as:

[H r, p
0 (div, Ω)]′ = {F + gradψ; F ∈ Lr

′
(Ω), ψ ∈ Lp′(Ω)}.



Lemma 2.2

Suppose that
z ∈ [H 6, 2

0 (div, Ω)]′,

that means that

z = ∇π − f , with π ∈ L2(Ω) and f ∈ L6/5(Ω)

and assume div z = 0 in Ω. Then

z · n ∈ H−3/2(Γ)

and for any χ ∈ H2(Ω) such that ∂χ
∂n = 0, we have

〈z ,∇χ〉
[H 6, 2

0 (div,Ω)]′×H 6, 2
0 (div,Ω)

= 〈z · n , χ〉H−3/2(Γ)×H3/2(Γ)



Proposition 2.3

For any
f ∈ L6/5(Ω), h ∈ H−1/2(Γ)

there exists π ∈ L2(Ω), unique up an additive constant, such
that

∆π = div f in Ω,
∂ π

∂ n
= f · n − divΓ(h × n) on Γ (4)

Proof.
Problem (4) is equivalent to the following very weak
formulation: for any χ ∈ H2(Ω) such that ∂χ

∂n = 0∫
Ω
π∆χ = −

∫
Ω
f · ∇χ+ 〈divΓ(h × n), χ〉H−3/2(Γ)×H3/2(Γ)

that we solve by duality thanks to the H2-regularity for the
strong Neumann problem with the RHS in L2(Ω).



To solve the Stokes problem (ST ), without loss generality,
we suppose that g = 0.

We consider here only the hilbertian case: we search the
velocity in H1(Ω) and the pressure in L2(Ω). For that, we
will suppose that

f ∈ L6/5(Ω), h ∈ H−1/2(Γ).

We solve first the following Neumann problem:

There exists a very weak solution π ∈ L2(Ω), unique up an
additive constant, satisfying:

∆π = div f in Ω, (∇π − f) · n = −divΓ(h × n) on Γ



Remark

Unlike the case of the Stokes problem with Dirichlet
boundary condition, it appears that when

div f = 0 in Ω and f · n − divΓ(h × n) = 0 on Γ

the pressure π can be constant.



Setting
H = H 6, 2

0 (div, Ω)

and let us consider the following space

E(∆,Ω) = {v ∈ H 1(Ω), ∆ v ∈ H ′},

which is a Banach space for the graph norm.

We have the following preliminary results:

D(Ω) is dense in E(∆,Ω).



As a consequence, we have the following result.

Proposition 2.4

The linear mapping γ : v → curl v |Γ × n defined on D(Ω) can
be extended to a linear continuous mapping

γ : E(∆,Ω) −→ H − 1
2 (Γ).

Moreover, we have the Green formula: for any v ∈ E(∆,Ω) and
ϕ ∈ H 1

T (Ω) with divϕ = 0 in Ω,

−〈∆ v , ϕ〉H ′×H =

∫
Ω

curl v ·curlϕ dx−〈curl v×n , ϕ〉Γ, (5)

where the duality on Γ is defined by 〈·, ·〉Γ = 〈·, ·〉
H −

1
2 (Γ)×H

1
2 (Γ)

.



Proposition 2.5 (Weak and Strong solutions of (ST ))

i) Let g = 0,

f ∈ L6/5(Ω), h × n ∈ H−1/2(Γ),

satisfying the following compatibility condition:

∀v ∈ K 2
T (Ω),

∫
Ω
f ·v dx +〈h×n , v〉H−1/2(Γ)× H 1/2(Γ) = 0.

Then, the problem (ST ) has a unique solution
(u , π) ∈ H 1(Ω)× L2(Ω)/R satisying the estimate:

‖u ‖H 1(Ω) +‖π‖L2(Ω)/R ≤ C(‖ f ‖L6/5(Ω) +‖h×n‖H−1/2(Γ)).

ii) If moreover Ω is of class C2,1 and h × n ∈W 1/6,6/5(Γ),
then the solution (u , π) belongs to W 2,6/5(Ω)×W 1,6/5(Ω).
If f ∈ L2(Ω) and h × n ∈ H 1/2(Γ), then the solution (u , π)
belongs to H 2(Ω)×H 1(Ω).



Proof.

Observe first that if u ∈ H 1(Ω) is solution of Problem ST ,
then ∆u ∈ H ′ and then

curlu × n ∈ H−1/2(Γ).

So the boundary condition of the tangential component of
the vorticity of u has a sense.



To prove the existence of weak solution, we will use
Lax-Milgram Lemma.

It is easy to see that if u ∈ V is solution of Problem (ST ), then

(P0
T ) ∀v ∈ V ,

∫
Ω
curlu ·curl v dx =

∫
Ω
f ·v dx +〈h×n , v〉H−1/2(Γ)× H 1/2(Γ).

where we recall that

V = {v ∈ L2(Ω), curl v ∈ L2(Ω), div v = 0, v ·n = 0 and 〈v ·n , 1〉Σj
= 0, 1 ≤ j ≤ J},

and
V ↪→ H 1(Ω) ↪→ L 6(Ω).

(observe the compatibility condition)



In fact, Problem (P0
T ) is equivalent to the problem: Find

u ∈ V such that

(Q0
T ) ∀w ∈W ,

∫
Ω

curlu ·curlw dx =

∫
Ω
f ·v dx+〈h×n , v〉Γ.

where

W = {w ∈ L2(Ω), div v = 0, curlw ∈ L2(Ω), w · n = 0}.



Taking w ∈ D(Ω), with div w = 0, then by de Rham’s
Theorem we deduce that there exits π ∈ L2(Ω) such that

−∆u +∇π = f in Ω.

Next multiplying this equation by w ∈W and using
Green-Formula, we deduce that

∀w ∈W , 〈curlu × n , w〉Γ = 〈h × n , w〉Γ.

Now, for any µ ∈ H 1/2(Γ), there exists

w ∈W with w = µτ on Γ.

Consequently

〈curlu × n , µ〉Γ = 〈h × n , µ〉Γ.



III. Stokes Equations with Pressure Boundary
Condition

Here, we decompose the Stokes problem in two problems

(S0
N )


−∆u = f in Ω,

div u = 0 in Ω,

u × n = 0, on Γ,

〈u · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

and

(S1
N )


−∆w +∇ θ = 0 in Ω,

divw = 0 in Ω,

w × n = g × n , θ = θ0 on Γ,

〈w · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

The pressure can be found independently of the velocity as a solution of the
Dirichlet problem:

∆ θ = 0 in Ω, θ = θ0 on Γ



We set G = −∇θ. Then, u and w are solutions respectively of

(E0
N )


−∆u = f in Ω,

div u = 0 in Ω,

u × n = 0, on Γ,

〈u · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

and

(E1
N )


−∆w = G in Ω,

divw = 0 in Ω,

w × n = g × n , on Γ,

〈w · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

We are reduced to solve Problem (E0
N ) and Problem (E1

N ).



Study of the elliptic problem

(E0
N )


−∆u = f in Ω,

divu = 0 in Ω,

u × n = 0, on Γ,

〈u · n , 1〉Γi = 0, 1 ≤ i ≤ I.



Remarks:

The condition div f = 0 in Ω is necessary to solve (E0
N ).

The condition divu = 0 in Ω ⇐⇒ divu = 0 on Γ on the
one hand. On the other hand, since

divu = divΓ uτ +Ku · n +
∂ u

∂ n
· n sur Γ,

where K denotes the mean curvature of Γ, the condition
divu = 0 on Γ is itself equivalent, if u ×n = 0 on Γ, to the
Fourier-Robin condition:

Ku · n +
∂ u

∂ n
· n = 0 on Γ.

That means that the problem (E0
N ) is equivalent to the

following: 
−∆u = f in Ω,

u × n = 0 on Γ

Ku · n +
∂ u

∂ n
· n = 0 on Γ.



Proposition 3.1 (Weak and Strong solutions of (E0
N ))

i) Let f ∈ L6/5(Ω) satisfying the following compatibility
conditions:

div f = 0 in Ω and ∀v ∈ K 2
T (Ω),

∫
Ω
f · v dx = 0.

Then, the problem (E0
N ) has a unique solution u ∈ H 1(Ω)

satisying the estimate:

‖u ‖H 1(Ω) ≤ C‖ f ‖L6/5(Ω).

ii) If moreover Ω is of class C2,1, then the solution u belongs
to W 2,6/5(Ω).



Proof. We use here only Method 1 of vector potential.

We have f ∈ L 6/5(Ω) and

div f = 0 in Ω, 〈f · n , 1〉Γi
= 0, 0 ≤ i ≤ I,

We know that if Ω is of class C1,1, there exists a unique
vector potential ψ ∈W 1,6/5(Ω) ↪→ L 2(Ω) such that

f = curlψ and divψ = 0 in Ω,

ψ · n = 0 on Γ,

〈ψ · n , 1〉Σj
= 0, 1 ≤ j ≤ J.

with the estimate

‖ψ‖W 1,6/5(Ω) ≤ C‖f ‖L6/5(Ω).



Now because ψ ∈ L 2(Ω), with

divψ = 0 in Ω, ψ · n = 0, 〈ψ · n , , 1〉Σj
= 0, 1 ≤ j ≤ J.

there exists a unique vector potential u ∈ H 1(Ω) such that

ψ = curlu and divu = 0 in Ω,

u × n = 0 on Γ,

〈u · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

with the estimate

‖u‖H 1(Ω) ≤ C‖ψ‖L 2(Ω) ≤ C‖f ‖L6/5(Ω).

Moreover if Ω is of class C2,1, then u ∈W 2,6/5(Ω).



Study of the elliptic problem

(E1
N )


−∆w = G in Ω,

divw = 0 in Ω,

w × n = g × n , on Γ,

〈w · n , 1〉Γi = 0, 1 ≤ i ≤ I.

where
G = −∇θ,

and where θ ∈W 1/6,6/5(Ω) is solution of the following Dirichlet
problem:

∆ θ = 0 in Ω, θ = θ0 on Γ.

with θ0 ∈W 1,6/5(Γ)



Proposition 3.2 (Weak and Strong solutions of (E1
N ))

i) Let

g × n ∈ H 1/2(Γ) and θ0 ∈W 1/6,6/5(Γ)

satisfying the following compatibility condition:

∀v ∈ K 2
N (Ω),

∫
Γ
θ0v · n = 0.

Then, the problem (E1
N ) has a unique solution u ∈ H 1(Ω) satisying the

estimate:

‖u ‖H 1(Ω) ≤ C
(
‖ g × n ‖H 1/2(Γ) + ‖ θ0 ‖W1/6,6/5(Γ)

)
.

ii) If

g × n ∈ H 3/2(Γ) and θ0 ∈W 7/6,6/5(Γ)

and Ω is of class C2,1, then the solution u belongs to H 2(Ω).



Very weak solution for (ST )

Let f , χ, g, and h with

f ∈ (T p′ (Ω))′, χ ∈ Lp(Ω), g ∈W−1/p,p(Γ), h ∈W −1−1/p,p(Γ),

with T p′ (Ω) =
{
ϕ ∈ H p′

0 (div, Ω); divϕ ∈W 1,p′

0 (Ω)
}

and satisfying the

compatibility conditions:

∀ϕ ∈ K p′

T (Ω), 〈f , ϕ〉
(T p′ (Ω))′×T p′ (Ω)

+ 〈h × n , ϕ〉Γ = 0. (6)∫
Ω
χd x = 〈g, 1〉Γ. (7)

Then, the Stokes problem (ST ) has exactly one solution u ∈ L p(Ω) and
π ∈W −1,p(Ω)/R. Moreover, there exists a constant C > 0 depending only on p
and Ω such that:

‖u‖Lp(Ω) + ‖π‖W −1,p(Ω)/R ≤ C
(
‖ f ‖

(T p′ (Ω))′ +‖χ‖Lp(Ω)+‖g‖W −1/p,p(Γ) +

+ ‖h × n‖W −1−1/p,p(Γ)

)
. (8)



Helmholtz Decomposition for vector fields in Lp(Ω)

For any vector field v ∈ Lp(Ω), we have the first following
decomposition:

v = z +∇χ+ curlu ,

z ∈ K p
N (Ω) is unique,

χ ∈W 1,p
0 (Ω) is unique,

u ∈W 1,p(Ω) is the unique solution, up to an additive
element of the kernel K p

T (Ω), of the problem :{
−∆u = curl v and divu = 0 in Ω,

u · n = 0, (curlu − v)× n = 0 on Γ.



Helmholtz Decomposition for vector fields in Lp(Ω)

For any vector field v ∈ Lp(Ω), we have the second following
decomposition:

v = z +∇χ+ curlu ,

z ∈ K p
T (Ω) is unique,

χ ∈W 1,p(Ω) is unique up an additive constant,

u ∈W 1,p(Ω) is the unique solution, up to an additive
element of the kernel K p

N (Ω), of the problem :{
−∆u = curl v and divu = 0 in Ω,

u × n = 0, on Γ.



Question:

What happens if the previous compatibility condition is not
satisfied?

Variant of the system (SN ) :

Find (u , π, c) such that:

(S ′N )


−∆u +∇π = f and divu = 0 in Ω,

u × n = g × n on Γ,

π = π0 on Γ0 and π = π0 + ci on Γi, 1 ≤ i ≤ I
〈u · n , 1〉Γi = 0, 1 ≤ i ≤ I,

where c = (ci)1≤i≤I .



Theorem (Weak and Strong solutions for (S ′N ))

Let f , g and π0 such that:

f ∈ [H p′

0 (curl, Ω)]′, g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ).

Then, the problem (S′N ) has a unique solution u ∈W 1,p(Ω), π ∈W 1,p(Ω) and
constants c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω)+‖π‖W 1,p(Ω) ≤ C
(
‖f ‖

[H
p′
0 (curl,Ω)]′

+‖g‖W 1−1/p,p +‖π0‖W 1−1/p,p

)
,

and where c1, . . . , cI are given by

ci = 〈f , ∇ qNi 〉Ω − 〈π0, ∇ qNi · n〉Γ. (9)

In particular, if f ∈ Lp(Ω) and g ∈W 2−1/p,p(Γ), then u ∈W 2,p(Ω).



Remark :

Observe that the following condition

∀v ∈ K p′

N (Ω), 〈 f , v 〉Ω −
∫

Γ
π0 v · n dσ = 0, (10)

is equivalent to the relations

ci = 0 for all i = 1, . . . , I.

Then, we have reduced to solve the problem (S′N ) without the constant ci
and (S′N ) is anything other then (SN ).



The assumption on f in the previous theorem can be weakened
by considering the space defined for all 1 < r, p <∞:

H r, p
0 (curl, Ω) = {ϕ ∈ Lr(Ω); curlϕ ∈ Lp(Ω), ϕ×n = 0 on Γ}.

which is a Banach space for the norm

‖ϕ‖H r, p
0 (curl,Ω) = ‖ϕ‖Lr(Ω) + ‖curlϕ‖Lp(Ω).

We can prove that the space D(Ω) is dense in H r′, p′

0 (curl, Ω)
and its dual space can be characterized as:

[H r′, p′

0 (curl, Ω)]′ = {F + curlψ; F ∈ Lr(Ω), ψ ∈ Lp(Ω)}.
(11)



Theorem (Second Version for Weak solutions for (S ′N ))

Let f , g and π0 such that

f ∈ [H r′,p′

0 (curl, Ω)]′, g×n ∈W 1−1/p,p(Γ), π0 ∈W 1−1/r,r(Γ),

with r ≤ p and 1
r ≤

1
p + 1

3 . Then, the problem (S ′N ) has a

unique solution u ∈W 1,p(Ω), π ∈W 1,r(Ω) and constants
c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω) + ‖π‖W 1,r(Ω) ≤ C
(
‖ f ‖

[H r′,p′
0 (curl,Ω)]′

+ ‖g × n‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ)

)
,

and c1, . . . , cI are given by (9), where we replace the duality
brackets on Ω by

〈 ·, · 〉Ω = 〈 ·, · 〉
[H r′,p′

0 (curl,Ω)]′×H r′,p′
0 (curl,Ω)

.



Theorem (Very weak solutions for (SN ))

Let f , g , and π0 with

f ∈ [H p′

0 (curl, Ω)]′, g ∈W −1/p,p(Γ), π0 ∈W −1/p,p(Γ),

and satisfying the compatibility conditions (10). Then, the
Stokes problem (SN ) has exactly one solution u ∈ L p(Ω) and
π ∈ Lp(Ω)/R. Moreover, there exists a constant C > 0
depending only on p and Ω such that:

‖u‖Lp(Ω) + ‖π‖Lp(Ω)/R ≤ C
(
‖ f ‖

[H p′
0 (curl,Ω)]′

+‖ g ‖W −1/p,p(Γ) +

+ ‖π0‖W −1/p,p(Γ)

)
. (12)



To study the case of Navier boundary conditions:

u · n = 0 and [D(u)n ]τ = h ,

it suffices to observe that

[2D(v)n ]τ = −curl v × n − 2Λv on Γ,

where

Λw =

2∑
k=1

(
wτ ·

∂n

∂sk

)
τ k.



VI. Oseen and Navier-Stokes Problem with Pressure
Boundary Condition

We are interested to study the following problem:
Find u , q and α ∈ RI satisfying:

(NS)


−∆u + u · ∇u +∇ q = f and div u = χ in Ω,

u × n = g on Γ,

q = q0 on Γ0 and q = q0 + αi on Γi, i = 1, . . . , I,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

Note that α is a supplementary unknown Stokes which depends in fact on u

If we take χ = 0 and g = 0, unlike the Navier-Stokes problem with Dirichlet

boundary conditions de Dirichlet, the property:
∫
Ω(u · ∇u) · u dx = 0 does

not hold.

But, we have

u · ∇u = curlu × u +
1

2
∇|u |2



We rewrite then (NS) under the following form:

(NS N )



−∆u + curlu × u +∇π = f in Ω,

divu = χ in Ω,

u × n = g on Γ,

π = π0 sur Γ0 et π = π0 + αi on Γi, i = 1, . . . , I,∫
Γi
u · n dσ = 0, i = 1, . . . , I,



Remarks.

We can search directely weak solutions u ∈ H 1(Ω) and
π ∈ L2(Ω) of the system (NS N ) by using a fixed point
method.

We can then obtain solutions u ∈W 1,p(Ω) for p > 2
thanks to the Stokes problem theory.

The case p < 2 to study the (NS N ) system is more
complicated.

For this reason, we will study the Oseen problem (OSN ).



Remarks.

We can search directely weak solutions u ∈ H 1(Ω) and
π ∈ L2(Ω) of the system (NS N ) by using a fixed point
method.

We can then obtain solutions u ∈W 1,p(Ω) for p > 2
thanks to the Stokes problem theory.

The case p < 2 to study the (NS N ) system is more
complicated.

For this reason, we will study the Oseen problem (OSN ).



Study of problem (OSN)

(OS N )



−∆u + curla × u +∇π = f in Ω,

divu = 0 in Ω,

u × n = 0 on Γ,

π = π0 + ci sur Γi, 0 = 1, . . . , I,∫
Γi
u · n dσ = 0, i = 1, . . . , I,

(13)
where we have take χ = 0 and g = 0. We suppose also that

curla ∈ L3/2(Ω)



We introduce the following Hilbert space:

V N =
{
v ∈ H 1(Ω); div v = 0 in Ω, v × n = 0 on Γ

and
∫

Γi
v · n = 0, 1 ≤ i ≤ I

}
and recall that

v 7→
(∫

Ω
|curl v |2

)1/2

is a norm on V N equivalent to the full norm of H 1(Ω).



Before establishing the result of existence of a weak solution for
the problem (13), we will see in what functional space it is
reasonable to take π0 and to find the pressure π appearing in
(13), knowing that we are first interesting to velocity fields in
u ∈ H 1(Ω) with f ∈ L6/5(Ω). With a such vector u , we have
curla × u ∈ L 6/5(Ω) ↪→ H −1(Ω). Since ∆u ∈ H −1(Ω), we
deduce from the first equation in (13) that ∇π ∈ H −1(Ω).
Then the pressure π belongs to L2(Ω). Furtheremore,

−∆π = div f − div (curla × u) in Ω,

so that ∆π ∈W −1,6/5(Ω) and the trace of π on Γ belongs to
H −1/2(Γ) so that we must assume that π0 ∈ H −1/2(Γ).



Theorem

Let f ∈ L 6/5(Ω), π0 ∈ H −1/2(Γ) and a ∈ D′(Ω) such that curla ∈ L 3/2(Ω).
Then, the problem:

Find (u, π, c) ∈ VN × L2(Ω)× RI+1 satisfying (13) with 〈π, 1〉Γ = 0 (14)

is equivalent to the problem: Find u ∈ VN such that

∀ v ∈ VN ,

∫
Ω
curlu · curl vdx +

∫
Ω

(curla× u) · v =

∫
Ω
f · v d x− 〈π0, v · n〉Γ

(15)

and find constants c0, . . . , cI satisfying
∑I

i=0 ci mes Γi + 〈π0, 1〉Γ = 0 and such
that for any i = 1, . . . , I:

ci − c0 =

∫
Ω
f · ∇ qNi dx−

∫
Ω

(curla× u) · ∇ qNi dx− 〈π0, ∇ qNi · n〉Γ. (16)



Using the Lax Milgram theorem and some regularity result of
the Laplacian, we prove the following theorem.

Theorem

Let f ∈ L6/5(Ω), curla ∈ L3/2(Ω) and π0 ∈ H −1/2(Γ), then the
problem (13) has a unique solution
(u, π, c) ∈ H 1(Ω)×L2(Ω)×RI+1 with 〈π, 1〉Γ = 0 and we have
the following estimates:

‖u‖H 1(Ω) ≤ C
(
‖ f ‖L6/5(Ω) + ‖π0‖H −1/2(Γ)

)
, (17)

‖π‖L2(Ω) ≤ C
(
1 + ‖curla ‖L3/2(Ω)

)(
‖ f ‖L6/5(Ω) + ‖π0‖H −1/2(Γ)

)
,

(18)
where c = (c0, . . . , cI). Moreover, if π0 ∈W 1/6,6/5(Γ) and Ω is
C 2,1, then u ∈W 2,6/5(Ω) and π ∈W 1,6/5(Ω).



Remarque

Even if the pressure π change in π − c0, the system (13) is equivalent to the
following type-Oseen problem:

(OSN )


−∆u + curla× u +∇π = f and div u = 0 in Ω,

u× n = 0 on Γ,

π = π0 on Γ0, and π = π0 + αi, i = 1, . . . , I, on Γi,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

where the unknowns constants satisfy for any i = 1, . . . , I:

αi =

∫
Ω
f · ∇ qNi dx−

∫
Ω

(curla× u) · ∇ qNi dx− 〈π0, ∇ qNi · n〉Γ.

But, it is clear that the new pressure π does not satisfy the condition 〈π, 1〉Γ = 0.



Remarque

If we suppose that f ∈ [H 6,2
0 (curl, Ω)]′, curla ∈ L3/2(Ω) and

π0 ∈ H−1/2(Γ), then the problems (14) and (15)-(16) are again
equivalent, with the difference that we use here the duality
brackets between [H 6,2

0 (curl, Ω)]′ and H 6,2
0 (curl, Ω) in place of

the integral on Ω in the right hand side of (15) and the density
of Dσ(Ω)×D(Ω) in the space

M =
{

(u, π) ∈ H 1
σ (Ω)×L2(Ω); −∆u +∇π ∈ [H 6,2

0 (curl, Ω)]′
}
.

It is easy now to extend Theorem 2 to the case where
f ∈ [H 6,2

0 (curl, Ω)]′, the divergence operator does not vanish
and the case of nonhomogeneous boundary conditions.



Theorem

Let f ∈ [H 6,2
0 (curl, Ω)]′, curla ∈ L3/2(Ω), χ ∈W 1,6/5(Ω), π0 ∈ H−1/2(Γ) and

g ∈ H 1/2(Γ). Then the problem


−∆u + curla× u +∇π = f and div u = χ in Ω,

u× n = g× n on Γ,

π = π0 on Γ0, and π = π0 + αi, i = 1, . . . , I on Γi,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

(19)

has a unique solution (u, π, α) ∈ H 1(Ω)× L2(Ω)× RI verifying the estimate:

‖u‖H 1(Ω) ≤ C
(
‖ f ‖

[H
6,2
0 (curl,Ω)]′

+ ‖π0‖H−1/2(Γ) +
(
1 + ‖curla‖L3/2(Ω)

)
×

×
(
‖χ‖W 1,6/5(Ω) + ‖ g ‖H 1/2(Γ)

))
,

‖π‖L2(Ω) ≤ C
(
1 + ‖curla‖L3/2(Ω)

)(
‖ f ‖

[H
6,2
0 (curl,Ω)]′

+ ‖π0‖H−1/2(Γ) +

+
(
1 + ‖curla‖L3/2(Ω)

)
×
(
‖χ‖W 1,6/5(Ω) + ‖ g ‖H 1/2(Γ)

))
,

where α = (α1, . . . , αI). Moreover, if f ∈ L6/5(Ω), π0 ∈W 1/6,6/5(Γ),

g ∈W 7/6,6/5(Γ) and Ω is C 2,1, then u ∈W 2,6/5(Ω) and π ∈W 1,6/5(Ω).



Strong Solutions when p ≥ 6/5.

In the rest of this talk, we suppose that Ω is C 2,1 and we
are interested in the study of strong solutions for the
system (OSN ).
When p < 3

2 , because the embedding
W 2,p(Ω) ↪→W 1,p∗(Ω), the term curla × u ∈ Lp(Ω) and
we can use the regularity results on the Stokes problem.
But this is not more the case when p ≥ 3

2 and that curla

belongs only to L3/2(Ω).
We give in the following theorem the good conditions to
ensure the existence of strong solutions.



Theorem

Let p ≥ 6/5,

f ∈ Lp(Ω), π0 ∈W 1−1/p,p(Γ), curla ∈ Ls(Ω)

with

s =
3

2
if p <

3

2
, s = p if p >

3

2
, s =

3

2
+ ε if p =

3

2
, (20)

for ε > 0 arbitrary. Then the solution (u , π) given by the previous theorem
belongs to W 2,p(Ω)×W 1,p(Ω) and satisfies the estimate:

‖u‖W 2,p(Ω) + ‖π‖W 1,p(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)(
‖f ‖Lp(Ω) + ‖π0‖W 1−1/p,p(Γ)

)
.



Generalized Solutions with (p > 2) :

Theorem

Let p > 2. Let f ∈ [H r′,p′

0 (curl, Ω)]′, χ ∈W 1,r(Ω)and
g ∈W 1−1/p,p(Γ). We suppose that π0 ∈W 1−1/r,r(Γ) and
curla ∈ Ls(Ω) with 1

r = 1
p + 1

3 and s satisfies:

s =
3

2
if 2 < p < 3, s =

3

2
+ ε if p = 3 and s = r if p > 3,

for some arbitrary ε > 0. Then the problem (19) has a unique
solution (u, π, α) ∈W 1,p(Ω)×W 1,r(Ω)× RI satisfying the
estimate

‖u‖W 1,p(Ω) + ‖π‖W 1,r(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)2(‖f‖
[H

r′,p′
0 (curl, Ω)]′

+

+ ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) + ‖χ‖W 1,r(Ω)

)
(21)

where α = (α1, . . . , αI).



Generalized Solutions (p < 2):
Using a duality argument, we obtain the following result :

Theorem

We suppose that p < 2. Soit f ∈ [H r′,p′

0 (curl, Ω)]′, curla ∈ Ls(Ω) and

π0 ∈W 1−1/r,r(Γ) with

r = 1 + ε′ if p <
3

2
, r =

9 + 6ε

9 + 2ε
if p =

3

2
and r =

3p

3 + p
if

3

2
< p < 2, (22)

s = (1+ε′)
3p

4p− 3− ε′(3− p)
if p <

3

2
, s =

3

2
+ε if p =

3

2
and s =

3

2
if

3

2
< p < 2,

(23)
where ε, ε′ > 0 are arbitrary. Problem (OSN ) has a unique solution
(u , π, α) ∈W 1,p(Ω)×W 1,r(Ω)× RI satisfying the estimate:

‖u‖W 1,p(Ω) ≤ C(1 + ‖curla‖Ls(Ω))
2(‖ f ‖

[H
r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Ω)),

‖π‖W 1,r(Ω) ≤ C(1 + ‖curla‖Ls(Ω))
3(‖ f ‖

[H
r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Ω))



The Navier-Stokes problem (NSN)

(NS N)



−∆u + curlu × u +∇ π = f in Ω,

divu = χ in Ω,

u × n = g on Γ,

π = π0 on Γi and π = π0 + ci on Γi, i = 1, . . . , I,∫
Γi
u · n dσ = 0, i = 1, . . . , I,



In the search of a proof of the existence of generalized solution
for the Navier-Stokes equations (NS N ), we consider the case of
small enough data.

Theorem

Let f ∈ [H r′,p′

0 (curl, Ω)]′, χ ∈W 1,r(Ω), g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/r,r(Γ)

with 3
2
< p and r = 3p

3+p
.

i) There exists a constant α1 > 0 such that, if

‖ f ‖
[H

r′,p′
0 (curl,Ω)]′

+ ‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) ≤ α1,

then, there exists a solution (u, π, c) ∈W 1,p(Ω)×W 1,r(Ω)× RI to problem
(NS N ) verifying the estimate

‖u‖W 1,p(Ω) ≤ C
(
‖f‖

[H
r′,p′
0 (curl,Ω)]′

+‖χ‖W 1,r(Ω)+‖g‖W 1−1/p,p(Γ)+‖π0‖W 1−1/r,r(Γ)

)
,

(24)
with ci = 〈f, ∇ qi〉Ωr′, p′

+
∫
Γ (χ− π0)∇ qNi · n−

∫
Ω(curlu× u) · ∇qNi .

ii) Moreover, there exists a constant α2 ∈]0, α1] such that this solution is unique,
if

‖ f ‖
[H

r′,p′
0 (curl, Ω)]′

+ ‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) ≤ α2.
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