Lecture IV

Stationary Stokes and Navier-Stokes Equations with Different Physical Boundary Conditions

Outline

- I. Stokes Equations with Normal Boundary Conditions
- II. Stokes Equations with Pressure and Tangential Boundary Conditions
- III. Oseen and Navier-Stokes Equations with Pressure and Tangential Boundary Conditions

Introduction and motivation

We are interested by the following Stokes equations:

$$-\Delta \boldsymbol{u} + \nabla \boldsymbol{\pi} = \boldsymbol{f} \qquad \text{in } \Omega,$$
$$\operatorname{div} \boldsymbol{u} = 0 \qquad \text{in } \Omega,$$

with the following nonhomogeneous boundary conditions:

$$\boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} \times \boldsymbol{n} \text{ and } \boldsymbol{\pi} = \pi_0 \text{ on } \boldsymbol{\Gamma},$$
 (1)

 or

$$\boldsymbol{u} \cdot \boldsymbol{n} = g \text{ and } \operatorname{\mathbf{curl}} \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{h} \times \boldsymbol{n} \text{ on } \Gamma,$$
 (2)

or the following Navier boundary condition

$$\boldsymbol{u} \cdot \boldsymbol{n} = g \quad \text{and} \quad 2 \left[\mathbf{D}(\boldsymbol{u}) \boldsymbol{n} \right]_{\boldsymbol{\tau}} + \alpha \boldsymbol{u}_{\boldsymbol{\tau}} = \boldsymbol{h},$$
 (3)

We will study also here the case of the Navier-Stokes equations:

Find $\boldsymbol{u}, \boldsymbol{\pi}, \alpha_1, \ldots, \alpha_I$, with $\alpha_i \in \mathbb{R}$

$$\begin{cases} -\Delta \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{\pi} = \boldsymbol{f} \quad \text{and} \quad \nabla \cdot \boldsymbol{u} = 0 \quad \text{in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} \times \boldsymbol{n} & \text{on } \Gamma, \\ \boldsymbol{\pi} = \boldsymbol{\pi}_0 \text{ on } \Gamma_0 \text{ and } \boldsymbol{\pi} = \boldsymbol{\pi}_0 + \alpha_i & \text{on } \Gamma_i, \ i = 1, \dots, I, \end{cases}$$

⊒ ▶

where we suppose that Ω is an open set possibly multiply connected sufficiently regular with a boundary Γ possibly non connected. We denote $\Gamma = \bigcup_{\substack{i=0\\ J}}^{I} \Gamma_i$ with Γ_i the connected components of Γ and $\Sigma = \bigcup_{\substack{j=1\\ j=1}}^{J} \Sigma_j$ and Σ_j a finite number of cuts.

$$\Omega^{\circ} = \Omega \setminus \bigcup_{j=1}^{J} \Sigma_j$$
 is simply connected.

Considering for example the case of the Stokes equations with the homogeneous boundary conditions

$$(\mathcal{S}_T^0) \quad \begin{cases} -\Delta \, \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} & \text{and} & \text{div} \, \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n} = 0, & \text{and} & \textbf{curl} \, \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{0} & \text{on } \Gamma. \end{cases}$$

Because these boundary conditions, we write

$-\Delta u = \operatorname{curl} \operatorname{curl} u - \nabla \operatorname{div} u$

For the variational formulation, we will consider the following spaces:

$$\boldsymbol{V} = \{ \boldsymbol{v} \in \boldsymbol{L}^2(\Omega), \ \operatorname{\mathbf{curl}} \boldsymbol{v} \in \boldsymbol{L}^2(\Omega), \ \operatorname{div} \boldsymbol{v} = 0, \ \boldsymbol{v} \cdot \boldsymbol{n} = 0 \ \operatorname{on} \ \Gamma \},$$

We will prove later that the Stokes problem (\mathcal{S}_T^0) , with $\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega)$, $\boldsymbol{u} \in \boldsymbol{V}$ and $\pi \in L^2(\Omega)$, is equivalent to

$$egin{cases} {
m Find} & m{u} \in m{V} \; {
m such \; that} \ orall \, m{v} \in m{V}, \quad \int_\Omega {m curl} \, m{u} \cdot {m curl} \, m{v} \, {
m d} x = \int_\Omega m{f} \, \cdot \, m{v} \, dx. \end{cases}$$

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ― 臣 … 釣ぬで

Questions:

• Because \boldsymbol{u} is apparently only in $\boldsymbol{H}^{1}(\Omega)$, how to give a sense to the following boundary condition

$\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{0} \quad \text{on } \Gamma ?$

• The bilinear form is it coercive to apply the Lax-Milgram lemma ?

We know (see Lecture I) that if Ω is simply connected, we have:

$$\forall \boldsymbol{v} \in \boldsymbol{V}, \quad \|\boldsymbol{v}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C \|\mathbf{curl}\,\boldsymbol{v}\|_{\boldsymbol{L}^{2}(\Omega)}.$$

- What happens if Ω is not simply connected ?
- Can we find generalized solution in $\boldsymbol{W}^{1,p}(\Omega)$ with 1 ?
- Can we find strong solution in $\boldsymbol{W}^{2,p}(\Omega)$ with 1 ?
- Can we find very weak solution in $L^p(\Omega)$ with 1 ?

II. Stokes problems with normal boundary conditions

Consider the following Stokes problem:

$$(\mathcal{S}_T) \quad \begin{cases} -\Delta \, \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} & \text{in } \Omega, \\ \text{div} \, \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{g}, \, \operatorname{\mathbf{curl}} \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{h} \times \boldsymbol{n} & \text{on } \Gamma, \\ \langle \boldsymbol{u} \cdot \boldsymbol{n}, 1 \rangle_{\Sigma_j} = 0, & 1 \leq j \leq J. \end{cases}$$

$Lemma \ 2.1$

Suppose that $\boldsymbol{\psi} \in \boldsymbol{W}^{1,p}(\Omega)$. Then

$$\operatorname{curl} \boldsymbol{\psi} \cdot \boldsymbol{n} = \operatorname{div}_{\Gamma}(\boldsymbol{\psi} \times \boldsymbol{n}) \quad \text{in } \boldsymbol{W}^{-1/p,p}(\Gamma).$$

Proof. To simplify, suppose p = 2. For any $\chi \in H^2(\Omega)$, Green formulas yield

$$egin{array}{lll} \int_\Omega \operatorname{curl} \psi \cdot \operatorname{grad} \chi &=& \langle \operatorname{curl} \psi \cdot n, \, \chi
angle_\Gamma \,, \ \int_\Omega \operatorname{curl} \psi \cdot \operatorname{grad} \chi &=& - \langle \psi imes n, \, \operatorname{grad} \chi
angle_\Gamma \ &=& \langle \operatorname{div}_\Gamma(\psi imes n), \, \chi
angle_\Gamma \,. \end{array}$$

II. Stokes problems with normal boundary conditions

Consider the following Stokes problem:

$$(\mathcal{S}_T) \quad \begin{cases} -\Delta \, \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} & \text{in } \Omega, \\ \text{div} \, \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{g}, \, \, \operatorname{\mathbf{curl}} \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{h} \times \boldsymbol{n} & \text{on } \Gamma, \\ \langle \boldsymbol{u} \cdot \boldsymbol{n}, \, 1 \rangle_{\Sigma_j} = 0, & 1 \leq j \leq J. \end{cases}$$

Lemma 2.1

Suppose that $\boldsymbol{\psi} \in \boldsymbol{W}^{1,p}(\Omega)$. Then

$$\operatorname{curl} \boldsymbol{\psi} \cdot \boldsymbol{n} = \operatorname{div}_{\Gamma}(\boldsymbol{\psi} \times \boldsymbol{n}) \quad \text{in } \boldsymbol{W}^{-1/p,p}(\Gamma).$$

Proof. To simplify, suppose p = 2. For any $\chi \in H^2(\Omega)$, Green formulas yield

$$\begin{split} \int_{\Omega} \mathbf{curl}\, \boldsymbol{\psi} \cdot \mathbf{grad}\, \chi &= \langle \mathbf{curl}\, \boldsymbol{\psi} \cdot \boldsymbol{n},\, \chi\rangle_{\Gamma}\,, \\ \int_{\Omega} \mathbf{curl}\, \boldsymbol{\psi} \cdot \mathbf{grad}\, \chi &= -\langle \boldsymbol{\psi} \times \boldsymbol{n},\, \mathbf{grad}\, \chi\rangle_{\Gamma} \\ &= \langle \mathrm{div}_{\Gamma}(\boldsymbol{\psi} \times \boldsymbol{n}),\, \chi\rangle_{\Gamma}\,. \end{split}$$

Applying the divergence operator in Problem (\mathcal{S}_T) , we get firstly

$$\Delta \pi = \operatorname{div} \boldsymbol{f}$$
 in Ω .

Setting then $\psi = \operatorname{curl} u$, we have

$$-\Delta u = \operatorname{curl} \psi$$
 in Ω

and

$$-\Delta \boldsymbol{u} \cdot \boldsymbol{n} = \operatorname{\mathbf{curl}} \boldsymbol{\psi} \cdot \boldsymbol{n} = (\boldsymbol{f} - \nabla \pi) \cdot \boldsymbol{n}.$$

So formally the pressure satisfies the following Neumann boundary condition:

$$\frac{\partial \pi}{\partial \boldsymbol{n}} = \boldsymbol{f} \cdot \boldsymbol{n} - \operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}) \quad \text{on } \Gamma$$

So, we can solve the pressure directly in the Stokes problem (\mathcal{S}_T) .

Let us introduce the following space:

$$oldsymbol{H}_0^{r,\,p}({
m div},\,\Omega)=\{oldsymbol{arphi}\in oldsymbol{L}^r(\Omega);\;\;{
m div}\,oldsymbol{arphi}\in L^p(\Omega),\;\;oldsymbol{arphi}\cdotoldsymbol{n}=0\;\,{
m on}\,\Gamma\},$$

which is a Banach space for the norm

$$\|\varphi\|_{\boldsymbol{H}_{0}^{r,p}(\operatorname{div},\Omega)}=\|\varphi\|_{\boldsymbol{L}^{r}(\Omega)}+\|\operatorname{div}\varphi\|_{\boldsymbol{L}^{p}(\Omega)}.$$

We can prove that

$$\boldsymbol{D}(\Omega)$$
 is dense in $\boldsymbol{H}_0^{r,p}(\operatorname{div},\Omega)$.

So its dual is then a subspace of $D'(\Omega)$ which can be characterized as:

$$[\boldsymbol{H}_0^{r,p}(\operatorname{div},\,\Omega)]' = \{\boldsymbol{F} + \operatorname{\mathbf{grad}} \boldsymbol{\psi}; \ \boldsymbol{F} \in \boldsymbol{L}^{r'}(\Omega), \ \boldsymbol{\psi} \in L^{p'}(\Omega) \}.$$

Lemma 2.2

Suppose that

$$\boldsymbol{z} \in [\boldsymbol{H}_0^{\,6,\,2}(ext{div},\,\Omega)]',$$

that means that

$$oldsymbol{z} =
abla \pi - oldsymbol{f}, \quad ext{with} \quad \pi \in L^2(\Omega) \quad ext{ and } oldsymbol{f} \in oldsymbol{L}^{6/5}(\Omega).$$

and assume div $\boldsymbol{z} = 0$ in Ω . Then

$$\boldsymbol{z} \cdot \boldsymbol{n} \in H^{-3/2}(\Gamma)$$

and for any $\chi \in H^2(\Omega)$ such that $\frac{\partial \chi}{\partial n} = 0$, we have

$$\langle \boldsymbol{z},
abla \chi
angle_{[\boldsymbol{H}_{0}^{\,6,\,2}(\operatorname{div},\,\Omega)]' imes \boldsymbol{H}_{0}^{\,6,\,2}(\operatorname{div},\,\Omega)} = \langle \boldsymbol{z} \cdot \boldsymbol{n},\,\chi
angle_{H^{-3/2}(\Gamma) imes H^{3/2}(\Gamma)}$$

Proposition 2.3

For any

$$\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega), \quad \boldsymbol{h} \in \boldsymbol{H}^{-1/2}(\Gamma)$$

there exists $\pi \in L^2(\Omega)$, unique up an additive constant, such that

$$\Delta \pi = \operatorname{div} \boldsymbol{f} \quad \text{in } \Omega, \quad \frac{\partial \pi}{\partial \boldsymbol{n}} = \boldsymbol{f} \cdot \boldsymbol{n} - \operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}) \quad \text{on } \Gamma \quad (4)$$

Proof.

Problem (4) is equivalent to the following very weak formulation: for any $\chi \in H^2(\Omega)$ such that $\frac{\partial \chi}{\partial n} = 0$

$$\int_{\Omega} \pi \Delta \chi = -\int_{\Omega} \boldsymbol{f} \cdot \nabla \chi + \langle \operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}), \, \chi \rangle_{H^{-3/2}(\Gamma) \times H^{3/2}(\Gamma)}$$

that we solve by duality thanks to the H^2 -regularity for the strong Neumann problem with the RHS in $L^2(\Omega)$.

- To solve the Stokes problem (S_T) , without loss generality, we suppose that g = 0.
- We consider here only the hilbertian case: we search the velocity in $H^1(\Omega)$ and the pressure in $L^2(\Omega)$. For that, we will suppose that

$$\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega), \quad \boldsymbol{h} \in \boldsymbol{H}^{-1/2}(\Gamma).$$

• We solve first the following Neumann problem:

There exists a very weak solution $\pi \in L^2(\Omega)$, unique up an additive constant, satisfying:

$$\Delta \pi = \operatorname{div} \boldsymbol{f} \quad ext{in } \Omega, \quad (
abla \pi - \boldsymbol{f}) \cdot \boldsymbol{n} = -\operatorname{div}_{\Gamma}(\boldsymbol{h} imes \boldsymbol{n}) \quad ext{on } \Gamma$$

Remark

• Unlike the case of the Stokes problem with Dirichlet boundary condition, it appears that when

 $\operatorname{div} \boldsymbol{f} = 0 \quad \text{in } \Omega \quad \text{and} \quad \boldsymbol{f} \cdot \boldsymbol{n} - \operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}) = 0 \quad \text{on } \Gamma$

the pressure π can be constant.

Setting

$$\boldsymbol{H} = \boldsymbol{H}_0^{\,6,\,2}(ext{div},\,\Omega)$$

and let us consider the following space

$$\boldsymbol{E}(\Delta, \Omega) = \{ \boldsymbol{v} \in \boldsymbol{H}^{1}(\Omega), \, \Delta \, \boldsymbol{v} \in \boldsymbol{H}' \},\$$

which is a Banach space for the graph norm.

We have the following preliminary results:

$$D(\overline{\Omega})$$
 is dense in $\boldsymbol{E}(\Delta, \Omega)$.

As a consequence, we have the following result.

Proposition 2.4

The linear mapping $\gamma : \boldsymbol{v} \to \operatorname{\mathbf{curl}} \boldsymbol{v}|_{\Gamma} \times \boldsymbol{n}$ defined on $\mathcal{D}(\overline{\Omega})$ can be extended to a linear continuous mapping

$$\gamma : \boldsymbol{E}(\Delta, \Omega) \longrightarrow \boldsymbol{H}^{-\frac{1}{2}}(\Gamma).$$

Moreover, we have the Green formula: for any $\boldsymbol{v} \in \boldsymbol{E}(\Delta, \Omega)$ and $\boldsymbol{\varphi} \in \boldsymbol{H}_T^1(\Omega)$ with div $\boldsymbol{\varphi} = 0$ in Ω ,

$$-\langle \Delta \boldsymbol{v}, \boldsymbol{\varphi} \rangle_{\boldsymbol{H}' \times \boldsymbol{H}} = \int_{\Omega} \operatorname{\mathbf{curl}} \boldsymbol{v} \cdot \operatorname{\mathbf{curl}} \boldsymbol{\varphi} \, \mathrm{d} \boldsymbol{x} - \langle \operatorname{\mathbf{curl}} \boldsymbol{v} \times \boldsymbol{n}, \boldsymbol{\varphi} \rangle_{\Gamma},$$
(5)

where the duality on Γ is defined by $\langle \cdot, \cdot \rangle_{\Gamma} = \langle \cdot, \cdot \rangle_{\boldsymbol{H}^{-\frac{1}{2}}(\Gamma) \times \boldsymbol{H}^{\frac{1}{2}}(\Gamma)}$.

Proposition 2.5 (Weak and Strong solutions of (S_T))

i) Let
$$g = 0$$
,

$$\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega), \quad \boldsymbol{h} \times \boldsymbol{n} \in \boldsymbol{H}^{-1/2}(\Gamma),$$

satisfying the following compatibility condition:

$$\forall \boldsymbol{v} \in \boldsymbol{K}_T^2(\Omega), \ \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \langle \boldsymbol{h} \times \boldsymbol{n}, \ \boldsymbol{v} \rangle_{\boldsymbol{H}^{-1/2}(\Gamma) \times \boldsymbol{H}^{1/2}(\Gamma)} = 0.$$

Then, the problem (S_T) has a unique solution $(\boldsymbol{u}, \pi) \in \boldsymbol{H}^1(\Omega) \times L^2(\Omega)/\mathbb{R}$ satisfying the estimate:

 $\| \boldsymbol{u} \|_{\boldsymbol{H}^{1}(\Omega)} + \| \pi \|_{L^{2}(\Omega)/\mathbb{R}} \leq C(\| \boldsymbol{f} \|_{\boldsymbol{L}^{6/5}(\Omega)} + \| \boldsymbol{h} \times \boldsymbol{n} \|_{\boldsymbol{H}^{-1/2}(\Gamma)}).$

ii) If moreover Ω is of class $\mathcal{C}^{2,1}$ and $\boldsymbol{h} \times \boldsymbol{n} \in \boldsymbol{W}^{1/6,6/5}(\Gamma)$, then the solution (\boldsymbol{u}, π) belongs to $\boldsymbol{W}^{2,6/5}(\Omega) \times W^{1,6/5}(\Omega)$. If $f \in \boldsymbol{L}^2(\Omega)$ and $\boldsymbol{h} \times \boldsymbol{n} \in \boldsymbol{H}^{1/2}(\Gamma)$, then the solution (\boldsymbol{u}, π) belongs to $\boldsymbol{H}^2(\Omega) \times H^1(\Omega)$.

Proof.

• Observe first that if $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ is solution of Problem S_{T} , then $\Delta \boldsymbol{u} \in \boldsymbol{H}'$ and then

$$\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n} \in \boldsymbol{H}^{-1/2}(\Gamma).$$

So the boundary condition of the tangential component of the vorticity of \boldsymbol{u} has a sense.

To prove the existence of weak solution, we will use Lax-Milgram Lemma.

It is easy to see that if $u \in V$ is solution of Problem (S_T) , then

$$(\mathcal{P}^0_T) \quad \forall v \in V, \ \int_\Omega \operatorname{\mathbf{curl}} u \cdot \operatorname{\mathbf{curl}} v \, \mathrm{d} x = \int_\Omega f \cdot v \, dx + \langle h imes n, v
angle_{H^{-1/2}(\Gamma) imes H^{1/2}(\Gamma)}.$$

where we recall that

 $\boldsymbol{V} = \{\boldsymbol{v} \in \boldsymbol{L}^2(\Omega), \, \operatorname{\boldsymbol{curl}} \boldsymbol{v} \in \boldsymbol{L}^2(\Omega), \, \operatorname{div} \boldsymbol{v} = 0, \, \, \boldsymbol{v} \cdot \boldsymbol{n} = 0 \, \, \operatorname{and} \, \, \langle \boldsymbol{v} \cdot \boldsymbol{n}, \, 1 \rangle_{\Sigma_j} = 0, \, \, 1 \leq j \leq J \},$

and

$$\boldsymbol{V} \hookrightarrow \boldsymbol{H}^{1}(\Omega) \hookrightarrow \boldsymbol{L}^{6}(\Omega).$$

(observe the compatibility condition)

• In fact, Problem (\mathcal{P}_T^0) is equivalent to the problem: Find $u \in V$ such that

$$(\mathcal{Q}_T^0) \quad orall oldsymbol{w} \in oldsymbol{W}, \quad \int_\Omega \operatorname{\mathbf{curl}} oldsymbol{u} \cdot \operatorname{\mathbf{curl}} oldsymbol{w} \, \mathrm{d} oldsymbol{x} = \int_\Omega oldsymbol{f} \cdot oldsymbol{v} \, doldsymbol{x} + \langle oldsymbol{h} imes oldsymbol{n}, oldsymbol{v}
angle_\Gamma$$

where

 $\boldsymbol{W} = \{ \boldsymbol{w} \in \boldsymbol{L}^2(\Omega), \operatorname{div} \boldsymbol{v} = 0, \operatorname{\mathbf{curl}} \boldsymbol{w} \in \boldsymbol{L}^2(\Omega), \ \boldsymbol{w} \cdot \boldsymbol{n} = 0 \}.$

• Taking $\boldsymbol{w} \in \mathcal{D}(\Omega)$, with div $\boldsymbol{w} = 0$, then by de Rham's Theorem we deduce that there exits $\pi \in L^2(\Omega)$ such that

$$-\Delta \boldsymbol{u} + \nabla \boldsymbol{\pi} = \boldsymbol{f} \quad \text{in } \Omega.$$

• Next multiplying this equation by $\boldsymbol{w} \in \boldsymbol{W}$ and using Green-Formula, we deduce that

$$orall oldsymbol{w} \in oldsymbol{W}, \quad \langle \operatorname{\mathbf{curl}} oldsymbol{u} imes oldsymbol{n}, \, oldsymbol{w}
angle_{\Gamma} = \langle oldsymbol{h} imes oldsymbol{n}, \, oldsymbol{w}
angle_{\Gamma}.$$

Now, for any $\boldsymbol{\mu} \in \boldsymbol{H}^{1/2}(\Gamma)$, there exists

$$\boldsymbol{w} \in \boldsymbol{W}$$
 with $\boldsymbol{w} = \boldsymbol{\mu}_{\tau}$ on Γ .

Consequently

$$\langle \operatorname{\mathbf{curl}} \boldsymbol{u} imes \boldsymbol{n}, \, \boldsymbol{\mu}
angle_{\Gamma} = \langle \boldsymbol{h} imes \boldsymbol{n}, \, \boldsymbol{\mu}
angle_{\Gamma}.$$

◆□▶ ◆□▶ ★目▶ ★目▶ ★□▶ ▲□

III. Stokes Equations with Pressure Boundary Condition

Here, we decompose the Stokes problem in two problems

$$\int -\Delta u = f \qquad \text{in } \Omega$$

$$(\mathcal{S}_N^0)$$
 $\begin{cases} \operatorname{div} u = 0 & \operatorname{in} \Omega, \\ 0 & 0 & 0 \end{cases}$

$$\begin{cases} \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{0}, & \text{on } \Gamma, \\ \langle \boldsymbol{u} \cdot \boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, & 1 \le i \le I. \end{cases}$$

and

$$(\mathcal{S}_N^1) \quad \begin{cases} -\Delta \, \boldsymbol{w} + \nabla \, \boldsymbol{\theta} = \boldsymbol{0} & \text{in } \Omega, \\ \text{div} \, \boldsymbol{w} = 0 & \text{in } \Omega, \\ \boldsymbol{w} \times \, \boldsymbol{n} = \boldsymbol{g} \times \boldsymbol{n}, \quad \boldsymbol{\theta} = \boldsymbol{\theta}_0 & \text{on } \Gamma, \\ \langle \boldsymbol{w} \cdot \boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, \quad 1 \leq i \leq I. \end{cases}$$

• The pressure can be found independently of the velocity as a solution of the Dirichlet problem:

$$\Delta \theta = 0$$
 in Ω , $\theta = \theta_0$ on Γ

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(で)

• We set $G = -\nabla \theta$. Then, u and w are solutions respectively of

$$\int -\Delta u = f \qquad \text{in } \Omega,$$

$$(\mathcal{E}_N^0) \begin{cases} \operatorname{div} u = 0 & \operatorname{in} \Omega, \\ \mathbf{u} = 0 & \mathbf{u} \end{cases}$$

$$\begin{array}{l} \mathbf{u} \times \mathbf{n} = \mathbf{0}, & \text{on } \Gamma, \\ \langle \mathbf{u} \cdot \mathbf{n}, 1 \rangle_{\Gamma_i} = 0, & 1 \leq i \leq I. \end{array}$$

and

$$\int -\Delta w = G \qquad \qquad \text{in } \Omega,$$

≣ ►

$$(\mathcal{E}_N^1) \begin{cases} -\Delta w = 0 & \text{in } \Omega, \\ \text{div } w = 0 & \text{in } \Omega, \end{cases}$$

$$egin{aligned} & oldsymbol{w} imes oldsymbol{n} & oldsymbol{w} imes oldsymbol{n} & oldsymbol{n} & oldsymbol{on} & oldsymbol{on} & oldsymbol{on} & oldsymbol{n} & oldsymbol{on} & oldsymbol{on$$

• We are reduced to solve Problem (\mathcal{E}_N^0) and Problem (\mathcal{E}_N^1) .

Study of the elliptic problem

$$(\mathcal{E}_N^0) \quad \begin{cases} -\Delta \, \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega, \\ \operatorname{div} \, \boldsymbol{u} = 0 & \operatorname{in} \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{0}, & \text{on } \Gamma, \\ \langle \boldsymbol{u} \cdot \boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, \quad 1 \leq i \leq I. \end{cases}$$

◆ロ → ◆母 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ◆ ● ◆

Remarks:

- The condition div $\mathbf{f} = 0$ in Ω is necessary to solve (E_N^0) .
- The condition div u = 0 in Ω ⇐⇒ div u = 0 on Γ on the one hand. On the other hand, since

$$\operatorname{div} \boldsymbol{u} = \operatorname{div}_{\Gamma} \boldsymbol{u}_{\tau} + K \boldsymbol{u} \cdot \boldsymbol{n} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} \cdot \boldsymbol{n} \quad \operatorname{sur} \, \Gamma,$$

where K denotes the mean curvature of Γ , the condition div $\boldsymbol{u} = 0$ on Γ is itself equivalent, if $\boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{0}$ on Γ , to the Fourier-Robin condition:

$$K \boldsymbol{u} \cdot \boldsymbol{n} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma.$$

That means that the problem (E_N^0) is equivalent to the following:

$$\begin{cases} -\Delta \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{0} & \text{on } \Gamma \\ K \boldsymbol{u} \cdot \boldsymbol{n} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} \cdot \boldsymbol{n} = 0 & \text{on } \Gamma. \end{cases}$$

Proposition 3.1 (Weak and Strong solutions of (E_N^0))

i) Let $\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega)$ satisfying the following compatibility conditions:

$$\operatorname{div} \boldsymbol{f} = 0 \quad \text{in } \Omega \quad \text{and } \forall \boldsymbol{v} \in \boldsymbol{K}_T^2(\Omega), \ \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, \mathrm{d} \boldsymbol{x} = 0.$$

Then, the problem (E_N^0) has a unique solution $\boldsymbol{u} \in \boldsymbol{H}^1(\Omega)$ satisfying the estimate:

$$\| \boldsymbol{u} \|_{\boldsymbol{H}^{1}(\Omega)} \leq C \| \boldsymbol{f} \|_{\boldsymbol{L}^{6/5}(\Omega)}.$$

ii) If moreover Ω is of class $\mathcal{C}^{2,1}$, then the solution \boldsymbol{u} belongs to $\boldsymbol{W}^{2,6/5}(\Omega)$.

Proof. We use here only Method 1 of vector potential.

• We have
$$\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega)$$
 and

$$\operatorname{div} \boldsymbol{f} = 0 \quad \operatorname{in} \Omega, \quad \left\langle \boldsymbol{f} \cdot \boldsymbol{n}, 1 \right\rangle_{\Gamma_i} = 0, \quad 0 \le i \le I,$$

• We know that if Ω is of class $\mathcal{C}^{1,1}$, there exists a unique vector potential $\boldsymbol{\psi} \in \boldsymbol{W}^{1,6/5}(\Omega) \hookrightarrow \boldsymbol{L}^2(\Omega)$ such that

$$egin{aligned} oldsymbol{f} = \operatorname{\mathbf{curl}} oldsymbol{\psi} & ext{and} & ext{div} oldsymbol{\psi} = 0 & ext{in} \ \Omega, \ oldsymbol{\psi} \cdot oldsymbol{n} = 0 & ext{on} \ \Gamma, \ \langle oldsymbol{\psi} \cdot oldsymbol{n}, \ 1
angle_{\Sigma_j} = 0, \ 1 \leq j \leq J. \end{aligned}$$

with the estimate

$$\left\|\boldsymbol{\psi}\right\|_{\boldsymbol{W}^{1,6/5}(\Omega)} \leq C \left\|\boldsymbol{f}\right\|_{\boldsymbol{L}^{6/5}(\Omega)}.$$

• Now because $\boldsymbol{\psi} \in \boldsymbol{L}^2(\Omega)$, with

div
$$\boldsymbol{\psi} = 0$$
 in Ω , $\boldsymbol{\psi} \cdot \boldsymbol{n} = 0, \langle \boldsymbol{\psi} \cdot \boldsymbol{n}, , 1 \rangle_{\Sigma_j} = 0, \ 1 \le j \le J.$

there exists a unique vector potential $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ such that

$$\psi = \operatorname{curl} \boldsymbol{u} \quad \text{and} \quad \operatorname{div} \boldsymbol{u} = 0 \text{ in } \Omega,$$

 $\boldsymbol{u} \times \boldsymbol{n} = 0 \quad \text{ on } \Gamma,$
 $\langle \boldsymbol{u} \cdot \boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, \ 1 \le i \le I.$

with the estimate

$$\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C \|\boldsymbol{\psi}\|_{\boldsymbol{L}^{2}(\Omega)} \leq C \|\boldsymbol{f}\|_{\boldsymbol{L}^{6/5}(\Omega)}.$$

• Moreover if Ω is of class $\mathcal{C}^{2,1}$, then $\boldsymbol{u} \in \boldsymbol{W}^{2,6/5}(\Omega)$.

Study of the elliptic problem

$$\int -\Delta w = G \qquad \text{in } \Omega,$$

$$(\mathcal{E}_N^1) \quad \begin{cases} \operatorname{div} \boldsymbol{w} = 0 & \text{in } \Omega, \end{cases}$$

$$\begin{array}{l} \begin{matrix} \boldsymbol{w}\times\boldsymbol{n}=\boldsymbol{g}\times\boldsymbol{n}, & \text{on } \boldsymbol{\Gamma}, \\ \langle \boldsymbol{w}\cdot\boldsymbol{n}, 1\rangle_{\Gamma_i}=0, & 1\leq i\leq I. \end{matrix}$$

where

$$G = -
abla heta_{i}$$

and where $\theta \in W^{1/6,6/5}(\Omega)$ is solution of the following Dirichlet problem:

$$\Delta \theta = 0$$
 in Ω , $\theta = \theta_0$ on Γ .

with $\theta_0 \in W^{1,6/5}(\Gamma)$

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - 釣�??

Proposition 3.2 (Weak and Strong solutions of (E_N^1))

i) Let

$$\boldsymbol{g} \times \boldsymbol{n} \in \boldsymbol{H}^{1/2}(\Gamma) \quad \text{and} \quad \theta_0 \in W^{1/6, 6/5}(\Gamma)$$

satisfying the following compatibility condition:

$$\forall \boldsymbol{v} \in \boldsymbol{K}_N^2(\Omega), \quad \int_{\Gamma} \theta_0 \boldsymbol{v} \cdot \boldsymbol{n} = 0.$$

Then, the problem (\underline{E}_{N}^{1}) has a unique solution $u \in H^{1}(\Omega)$ satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C\Big(\|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{H}^{1/2}(\Gamma)} + \|\boldsymbol{\theta}_{0}\|_{W^{1/6,6/5}(\Gamma)}\Big).$$

ii) If

$$\boldsymbol{g} \times \boldsymbol{n} \in \boldsymbol{H}^{3/2}(\Gamma) \quad \text{and} \quad \theta_0 \in W^{7/6,6/5}(\Gamma)$$

and Ω is of class $\mathcal{C}^{2,1}$, then the solution \boldsymbol{u} belongs to $\boldsymbol{H}^{2}(\Omega)$.

Very weak solution for (\mathcal{S}_T)

Let f, χ, g , and h with

$$f \in (T^{p'}(\Omega))', \ \chi \in L^{p}(\Omega), \ g \in W^{-1/p,p}(\Gamma), \ h \in W^{-1-1/p,p}(\Gamma)$$

with $T^{p'}(\Omega) = \left\{ \varphi \in H_0^{p'}(\operatorname{div}, \Omega); \operatorname{div} \varphi \in W_0^{1,p'}(\Omega) \right\}$ and satisfying the compatibility conditions:

$$\forall \boldsymbol{\varphi} \in \boldsymbol{K}_{T}^{p'}(\Omega), \quad \langle \boldsymbol{f}, \boldsymbol{\varphi} \rangle_{(T^{p'}(\Omega))' \times T^{p'}(\Omega)} + \langle \boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{\varphi} \rangle_{\Gamma} = 0.$$
 (6)
$$\int_{\Omega} \chi \, \mathrm{d}\, \boldsymbol{x} = \langle \boldsymbol{g}, 1 \rangle_{\Gamma}.$$
 (7)

Then, the Stokes problem (\mathcal{S}_T) has exactly one solution $u \in L^p(\Omega)$ and $\pi \in W^{-1,p}(\Omega)/\mathbb{R}$. Moreover, there exists a constant C > 0 depending only on p and Ω such that:

$$\|\boldsymbol{u}\|_{L^{p}(\Omega)} + \|\pi\|_{W^{-1,p}(\Omega)/\mathbb{R}} \leq C\Big(\|\boldsymbol{f}\|_{(T^{p'}(\Omega))'} + \|\chi\|_{L^{p}(\Omega)} + \|g\|_{W^{-1/p,p}(\Gamma)} + \|\boldsymbol{h} \times \boldsymbol{n}\|_{W^{-1-1/p,p}(\Gamma)}\Big).$$
(8)

Helmholtz Decomposition for vector fields in $L^p(\Omega)$

For any vector field $\boldsymbol{v} \in \boldsymbol{L}^p(\Omega)$, we have the first following decomposition:

 $\boldsymbol{v} = \boldsymbol{z} + \nabla \, \boldsymbol{\chi} + \operatorname{\mathbf{curl}} \boldsymbol{u},$

- $\boldsymbol{z} \in \boldsymbol{K}_N^p(\Omega)$ is unique,
- $\chi \in W_0^{1,p}(\Omega)$ is unique,
- $\boldsymbol{u} \in \boldsymbol{W}^{1,p}(\Omega)$ is the unique solution, up to an additive element of the kernel $\boldsymbol{K}_T^p(\Omega)$, of the problem :

$$\begin{cases} -\Delta \boldsymbol{u} = \operatorname{\mathbf{curl}} \boldsymbol{v} \quad \text{and} \quad \operatorname{div} \boldsymbol{u} = 0 \quad \text{ in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n} = 0, \quad (\operatorname{\mathbf{curl}} \boldsymbol{u} - \boldsymbol{v}) \times \boldsymbol{n} = 0 \quad \text{ on } \Gamma. \end{cases}$$

- ロト 《御 》 《 臣 》 《 臣 》 三 三 の Q ()

Helmholtz Decomposition for vector fields in $L^p(\Omega)$

For any vector field $\boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega)$, we have the second following decomposition:

$$\boldsymbol{v} = \boldsymbol{z} + \nabla \, \chi + \operatorname{\mathbf{curl}} \boldsymbol{u},$$

- $\boldsymbol{z} \in \boldsymbol{K}_T^p(\Omega)$ is unique,
- $\chi \in W^{1,p}(\Omega)$ is unique up an additive constant,
- $\boldsymbol{u} \in \boldsymbol{W}^{1,p}(\Omega)$ is the unique solution, up to an additive element of the kernel $\boldsymbol{K}_{N}^{p}(\Omega)$, of the problem :

$$\begin{cases} -\Delta \boldsymbol{u} = \operatorname{curl} \boldsymbol{v} & \text{and} & \operatorname{div} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = 0, & \text{on } \Gamma. \end{cases}$$

(ロト 《母 と 《臣 と 《臣 と 《母)

Question:

What happens if the previous compatibility condition is not satisfied?

Variant of the system (\mathcal{S}_N) :

Find $(\boldsymbol{u}, \pi, \boldsymbol{c})$ such that:

$$(\mathcal{S}'_N) \quad \begin{cases} -\Delta \, \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} \text{ and div } \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \times \, \boldsymbol{n} = \boldsymbol{g} \times \, \boldsymbol{n} & \text{on } \Gamma, \\ \boldsymbol{\pi} = \pi_0 \text{ on } \Gamma_0 \text{ and } \boldsymbol{\pi} = \pi_0 + \boldsymbol{c_i} & \text{on } \Gamma_i, \ 1 \le i \le I \\ \langle \boldsymbol{u} \cdot \boldsymbol{n}, \ 1 \rangle_{\Gamma_i} = 0, \ 1 \le i \le I, \end{cases}$$

where $\boldsymbol{c} = (c_i)_{1 \leq i \leq I}$.

Theorem (Weak and Strong solutions for (\mathcal{S}'_N))

Let f, g and π_0 such that:

$$\boldsymbol{f} \in [\boldsymbol{H}_0^{p'}(\operatorname{\mathbf{curl}}, \Omega)]', \quad \boldsymbol{g} \in \boldsymbol{W}^{1-1/p, p}(\Gamma), \quad \pi_0 \in W^{1-1/p, p}(\Gamma).$$

Then, the problem (S'_N) has a unique solution $u \in W^{1,p}(\Omega)$, $\pi \in W^{1,p}(\Omega)$ and constants c_1, \ldots, c_I satisfying the estimate:

$$\|u\|_{W^{1,p}(\Omega)} + \|\pi\|_{W^{1,p}(\Omega)} \le C \big(\|f\|_{[H_0^{p'}(\operatorname{curl},\Omega)]'} + \|g\|_{W^{1-1/p,p}} + \|\pi_0\|_{W^{1-1/p,p}} \big),$$

and where c_1, \ldots, c_I are given by

$$c_i = \langle \boldsymbol{f}, \, \nabla \, \boldsymbol{q}_i^N \rangle_\Omega - \langle \pi_0, \, \nabla \, \boldsymbol{q}_i^N \cdot \boldsymbol{n} \rangle_\Gamma.$$
(9)

In particular, if $f \in L^p(\Omega)$ and $g \in W^{2-1/p,p}(\Gamma)$, then $u \in W^{2,p}(\Omega)$.

Remark :

• Observe that the following condition

$$\forall \boldsymbol{v} \in \boldsymbol{K}_{N}^{p'}(\Omega), \qquad \langle \boldsymbol{f}, \, \boldsymbol{v} \, \rangle_{\Omega} - \int_{\Gamma} \pi_{0} \, \boldsymbol{v} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = 0, \tag{10}$$

is equivalent to the relations

$$c_i = 0$$
 for all $i = 1, \ldots, I$.

Then, we have reduced to solve the problem (\mathcal{S}'_N) without the constant c_i and (\mathcal{S}'_N) is anything other then (\mathcal{S}_N) .

The assumption on f in the previous theorem can be weakened by considering the space defined for all $1 < r, p < \infty$:

 $\boldsymbol{H}_{0}^{r,p}(\operatorname{\mathbf{curl}},\,\Omega) = \{\boldsymbol{\varphi} \in \boldsymbol{L}^{r}(\Omega); \ \operatorname{\mathbf{curl}}\, \boldsymbol{\varphi} \in \boldsymbol{L}^{p}(\Omega), \ \boldsymbol{\varphi} \times \boldsymbol{n} = \boldsymbol{0} \text{ on } \Gamma\}.$

which is a Banach space for the norm

$$\|arphi\|_{oldsymbol{H}_{0}^{r,\,p}(\mathbf{curl},\,\Omega)}=\|arphi\|_{oldsymbol{L}^{r}(\Omega)}+\|\mathbf{curl}\,arphi\|_{oldsymbol{L}^{p}(\Omega)}.$$

We can prove that the space $\mathcal{D}(\Omega)$ is dense in $H_0^{r',p'}(\text{curl}, \Omega)$ and its dual space can be characterized as:

$$[\boldsymbol{H}_{0}^{r',p'}(\operatorname{\mathbf{curl}},\,\Omega)]' = \{\boldsymbol{F} + \operatorname{\mathbf{curl}}\boldsymbol{\psi}; \ \boldsymbol{F} \in \boldsymbol{L}^{r}(\Omega), \ \boldsymbol{\psi} \in \boldsymbol{L}^{p}(\Omega)\}.$$
(11)

Theorem (Second Version for Weak solutions for (\mathcal{S}'_N))

Let $\boldsymbol{f}, \boldsymbol{g}$ and π_0 such that

$$oldsymbol{f} \in [oldsymbol{H}_0^{r',p'}(\mathbf{curl},\,\Omega)]', \quad oldsymbol{g} imes oldsymbol{n} \in oldsymbol{W}^{1-1/p,p}(\Gamma), \quad \pi_0 \in W^{1-1/r,r}(\Gamma),$$

with $r \leq p$ and $\frac{1}{r} \leq \frac{1}{p} + \frac{1}{3}$. Then, the problem (\mathcal{S}'_N) has a unique solution $\boldsymbol{u} \in \boldsymbol{W}^{1,p}(\Omega), \pi \in W^{1,r}(\Omega)$ and constants c_1, \ldots, c_I satisfying the estimate:

$$\begin{aligned} \|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} &+ \|\pi\|_{W^{1,r}(\Omega)} \leq C \big(\|\boldsymbol{f}\|_{[\boldsymbol{H}_{0}^{r',p'}(\operatorname{\mathbf{curl}},\Omega)]'} \\ &+ \|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{W}^{1-1/p,p}(\Gamma)} + \|\pi_{0}\|_{W^{1-1/r,r}(\Gamma)} \big), \end{aligned}$$

and c_1, \ldots, c_I are given by (9), where we replace the duality brackets on Ω by

$$\langle \cdot, \cdot \rangle_{\Omega} = \langle \cdot, \cdot \rangle_{[\boldsymbol{H}_{0}^{r',p'}(\operatorname{\mathbf{curl}},\Omega)]' \times \boldsymbol{H}_{0}^{r',p'}(\operatorname{\mathbf{curl}},\Omega)]}$$

Theorem (Very weak solutions for (\mathcal{S}_N))

Let $\boldsymbol{f}, \boldsymbol{g}, \text{ and } \pi_0$ with

$$oldsymbol{f} \in [oldsymbol{H}_0^{p'}(\mathbf{curl},\,\Omega)]', \;oldsymbol{g} \in oldsymbol{W}^{-1/p,p}(\Gamma), \; \pi_0 \in W^{-1/p,p}(\Gamma),$$

and satisfying the compatibility conditions (10). Then, the Stokes problem (\mathcal{S}_N) has exactly one solution $\boldsymbol{u} \in \boldsymbol{L}^p(\Omega)$ and $\pi \in L^p(\Omega)/\mathbb{R}$. Moreover, there exists a constant C > 0depending only on p and Ω such that:

$$\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)} + \|\pi\|_{L^{p}(\Omega)/\mathbb{R}} \leq C \Big(\|\boldsymbol{f}\|_{[\boldsymbol{H}_{0}^{p'}(\operatorname{\mathbf{curl}},\Omega)]'} + \|\boldsymbol{g}\|_{\boldsymbol{W}^{-1/p,p}(\Gamma)} + \|\pi_{0}\|_{\boldsymbol{W}^{-1/p,p}(\Gamma)} \Big).$$
(12)

To study the case of Navier boundary conditions:

$$oldsymbol{u}\cdotoldsymbol{n}=0 \quad ext{and} \quad [\mathbf{D}(oldsymbol{u})oldsymbol{n}]_{oldsymbol{ au}}=oldsymbol{h},$$

it suffices to observe that

$$[2\mathbf{D}(\boldsymbol{v})\boldsymbol{n}]_{\boldsymbol{\tau}} = -\mathbf{curl}\,\boldsymbol{v}\times\boldsymbol{n} - 2\mathbf{\Lambda}\boldsymbol{v} \quad \text{on}\,\Gamma,$$

where

$$oldsymbol{\Lambda}oldsymbol{w} = \sum_{k=1}^2ig(oldsymbol{w}_{oldsymbol{ au}}\cdotrac{\partialoldsymbol{n}}{\partial s_k}ig)oldsymbol{ au}_k.$$

(ロ) 《母) 《臣) 《臣) 〔日) へのぐ

VI. Oseen and Navier-Stokes Problem with Pressure Boundary Condition

We are interested to study the following problem: Find u, q and $\alpha \in \mathbb{R}^{I}$ satisfying:

$$(\mathcal{NS}) \qquad \begin{cases} -\Delta \, \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \, \boldsymbol{u} + \nabla \, \boldsymbol{q} = \boldsymbol{f} & \text{and} & \text{div} \, \boldsymbol{u} = \chi & \text{in } \Omega, \\ \boldsymbol{u} \times \, \boldsymbol{n} = \boldsymbol{g} & \text{on } \Gamma, \\ \boldsymbol{q} = q_0 & \text{on } \Gamma_0 & \text{and} \, \boldsymbol{q} = q_0 + \alpha_i & \text{on } \Gamma_i, \ i = 1, \dots, I, \\ \int_{\Gamma_i} \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = 0, \ i = 1, \dots, I, \end{cases}$$

- Note that α is a supplementary unknown Stokes which depends in fact on u
- If we take $\chi = 0$ and g = 0, unlike the Navier-Stokes problem with Dirichlet boundary conditions de Dirichlet, the property: $\int_{\Omega} (\boldsymbol{u} \cdot \nabla \boldsymbol{u}) \cdot \boldsymbol{u} \, d\boldsymbol{x} = 0$ does not hold.
- But, we have

$$oldsymbol{u} \cdot
abla oldsymbol{u} = \mathbf{curl}\,oldsymbol{u} imes oldsymbol{u} + rac{1}{2}\,
abla |oldsymbol{u}|^2$$

→ Ξ →

We rewrite then (\mathcal{NS}) under the following form:

 $(\mathcal{NS}_N) \qquad \begin{cases} -\Delta \, \boldsymbol{u} + \mathbf{curl} \, \boldsymbol{u} \times \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} & \text{in } \Omega, \\ \text{div} \, \boldsymbol{u} = \chi & \text{in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} & \text{on } \Gamma, \\ \boldsymbol{\pi} = \pi_0 \, \text{sur } \Gamma_0 \text{ et } \boldsymbol{\pi} = \pi_0 + \alpha_i & \text{on } \Gamma_i, \, i = 1, \dots, I, \\ \int_{\Gamma_i} \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d} \boldsymbol{\sigma} = 0, \, i = 1, \dots, I, \end{cases}$

Remarks.

- We can search directely weak solutions $\boldsymbol{u} \in \boldsymbol{H}^1(\Omega)$ and $\pi \in L^2(\Omega)$ of the system (\mathcal{NS}_N) by using a fixed point method.
- We can then obtain solutions $\boldsymbol{u} \in \boldsymbol{W}^{1,p}(\Omega)$ for p > 2 thanks to the Stokes problem theory.
- The case p < 2 to study the (NS_N) system is more complicated.
- For this reason, we will study the Oseen problem (OS_N) .

Remarks.

- We can search directely weak solutions $\boldsymbol{u} \in \boldsymbol{H}^1(\Omega)$ and $\pi \in L^2(\Omega)$ of the system (\mathcal{NS}_N) by using a fixed point method.
- We can then obtain solutions $\boldsymbol{u} \in \boldsymbol{W}^{1,p}(\Omega)$ for p > 2 thanks to the Stokes problem theory.
- The case p < 2 to study the (NS_N) system is more complicated.
- For this reason, we will study the Oseen problem (\mathcal{OS}_N) .

$$(\mathcal{OS}_N) \qquad \begin{cases} -\Delta \, \boldsymbol{u} + \operatorname{curl} \boldsymbol{a} \times \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} & \text{in } \Omega, \\ \operatorname{div} \, \boldsymbol{u} = 0 & \operatorname{in} \Omega, \\ \boldsymbol{u} \times \, \boldsymbol{n} = \boldsymbol{0} & \operatorname{on} \Gamma, \\ \boldsymbol{\pi} = \pi_0 + c_i & \operatorname{sur} \Gamma_i, \ 0 = 1, \dots, I, \\ \int_{\Gamma_i} \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = 0, \ i = 1, \dots, I, \end{cases}$$
(13)

where we have take $\chi = 0$ and g = 0. We suppose also that

 $\operatorname{\mathbf{curl}} \boldsymbol{a} \in \boldsymbol{L}^{3/2}(\Omega)$

We introduce the following Hilbert space:

$$oldsymbol{V}_N = \left\{ oldsymbol{v} \in H^1(\Omega); ext{ div } oldsymbol{v} = 0 ext{ in } \Omega, \ oldsymbol{v} imes oldsymbol{n} = oldsymbol{0} ext{ on } \Gamma$$

and $\int_{\Gamma_i} oldsymbol{v} \cdot oldsymbol{n} = 0, \ 1 \leq i \leq I
ight\}$

and recall that

$$oldsymbol{v}\mapsto \Big(\int_{\Omega}|{f curl}\,oldsymbol{v}|^2\Big)^{1/2}$$
 .

→ Ξ →

is a norm on \boldsymbol{V}_N equivalent to the full norm of $\boldsymbol{H}^1(\Omega)$.

Before establishing the result of existence of a weak solution for the problem (13), we will see in what functional space it is reasonable to take π_0 and to find the pressure π appearing in (13), knowing that we are first interesting to velocity fields in $\boldsymbol{u} \in \boldsymbol{H}^1(\Omega)$ with $\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega)$. With a such vector \boldsymbol{u} , we have $\operatorname{curl} \boldsymbol{a} \times \boldsymbol{u} \in \boldsymbol{L}^{6/5}(\Omega) \hookrightarrow \boldsymbol{H}^{-1}(\Omega)$. Since $\Delta \boldsymbol{u} \in \boldsymbol{H}^{-1}(\Omega)$, we deduce from the first equation in (13) that $\nabla \pi \in \boldsymbol{H}^{-1}(\Omega)$. Then the pressure π belongs to $L^2(\Omega)$. Furtheremore,

$$-\Delta \pi = \operatorname{div} \boldsymbol{f} - \operatorname{div} \left(\operatorname{\mathbf{curl}} \boldsymbol{a} \times \boldsymbol{u}\right) \quad \text{in } \Omega,$$

so that $\Delta \pi \in W^{-1,6/5}(\Omega)$ and the trace of π on Γ belongs to $H^{-1/2}(\Gamma)$ so that we must assume that $\pi_0 \in H^{-1/2}(\Gamma)$.

Theorem

Let $\mathbf{f} \in \mathbf{L}^{6/5}(\Omega)$, $\pi_0 \in H^{-1/2}(\Gamma)$ and $\mathbf{a} \in \mathbf{D}'(\Omega)$ such that $\operatorname{curl} \mathbf{a} \in \mathbf{L}^{3/2}(\Omega)$. Then, the problem:

Find
$$(\boldsymbol{u}, \pi, \boldsymbol{c}) \in \boldsymbol{V}_N \times L^2(\Omega) \times \mathbb{R}^{I+1}$$
 satisfying (13) with $\langle \pi, 1 \rangle_{\Gamma} = 0$ (14)

is equivalent to the problem: Find $\mathbf{u} \in \mathbf{V}_N$ such that

$$\forall v \in V_N, \quad \int_{\Omega} \operatorname{\mathbf{curl}} u \cdot \operatorname{\mathbf{curl}} v \, \mathrm{d} x + \int_{\Omega} (\operatorname{\mathbf{curl}} u \times u) \cdot v = \int_{\Omega} f \cdot v \, \mathrm{d} \, x - \langle \pi_0, v \cdot n \rangle_{\Gamma}$$
(15)

and find constants c_0, \ldots, c_I satisfying $\sum_{i=0}^{I} c_i \max \Gamma_i + \langle \pi_0, 1 \rangle_{\Gamma} = 0$ and such that for any $i = 1, \ldots, I$:

$$c_i - c_0 = \int_{\Omega} \boldsymbol{f} \cdot \nabla q_i^N \, \mathrm{d}\boldsymbol{x} - \int_{\Omega} (\operatorname{\mathbf{curl}} \boldsymbol{a} \times \boldsymbol{u}) \cdot \nabla q_i^N \, \mathrm{d}\boldsymbol{x} - \langle \pi_0, \, \nabla q_i^N \cdot \boldsymbol{n} \rangle_{\Gamma}.$$
(16)

Using the Lax Milgram theorem and some regularity result of the Laplacian, we prove the following theorem.

Theorem

Let $\mathbf{f} \in \mathbf{L}^{6/5}(\Omega)$, $\operatorname{curl} \mathbf{a} \in \mathbf{L}^{3/2}(\Omega)$ and $\pi_0 \in H^{-1/2}(\Gamma)$, then the problem (13) has a unique solution $(\mathbf{u}, \pi, \mathbf{c}) \in \mathbf{H}^1(\Omega) \times L^2(\Omega) \times \mathbb{R}^{I+1}$ with $\langle \pi, 1 \rangle_{\Gamma} = 0$ and we have the following estimates:

$$\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C \big(\|\boldsymbol{f}\|_{\boldsymbol{L}^{6/5}(\Omega)} + \|\pi_{0}\|_{H^{-1/2}(\Gamma)} \big),$$
(17)

 $\|\pi\|_{L^{2}(\Omega)} \leq C \left(1 + \|\mathbf{curl}\,\boldsymbol{a}\|_{\boldsymbol{L}^{3/2}(\Omega)}\right) \left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{6/5}(\Omega)} + \|\pi_{0}\|_{H^{-1/2}(\Gamma)}\right),$ (18)

where $c = (c_0, ..., c_I)$. Moreover, if $\pi_0 \in W^{1/6, 6/5}(\Gamma)$ and Ω is $C^{2,1}$, then $u \in W^{2, 6/5}(\Omega)$ and $\pi \in W^{1, 6/5}(\Omega)$.

Remarque

Even if the pressure π change in $\pi - c_0$, the system (13) is equivalent to the following type-Oseen problem:

$$(\mathcal{OS}_N) \qquad \begin{cases} -\Delta \, \boldsymbol{u} + \operatorname{curl} \boldsymbol{a} \times \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} \quad \text{and} \quad \operatorname{div} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \times \, \boldsymbol{n} = \boldsymbol{0} & \text{on } \Gamma, \\ \boldsymbol{\pi} = \pi_0 \quad \text{on } \Gamma_0, \quad \text{and} \quad \boldsymbol{\pi} = \pi_0 + \alpha_i, \; i = 1, \dots, I, \\ \int_{\Gamma_i} \boldsymbol{u} \cdot \, \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = 0, \; i = 1, \dots, I, \end{cases}$$

where the unknowns constants satisfy for any i = 1, ..., I:

$$lpha_i = \int_{\Omega} \boldsymbol{f} \cdot
abla \, q_i^N \, \mathrm{d}\boldsymbol{x} - \int_{\Omega} (\operatorname{\mathbf{curl}} \boldsymbol{a} imes \boldsymbol{u}) \cdot
abla \, q_i^N \, \mathrm{d}\boldsymbol{x} - \langle \pi_0, \,
abla \, q_i^N \cdot \boldsymbol{n}
angle_{\Gamma}.$$

But, it is clear that the new pressure π does not satisfy the condition $\langle \pi, 1 \rangle_{\Gamma} = 0$.

Remarque

If we suppose that $\mathbf{f} \in [\mathbf{H}_0^{6,2}(\operatorname{\mathbf{curl}}, \Omega)]'$, $\operatorname{\mathbf{curl}} \mathbf{a} \in \mathbf{L}^{3/2}(\Omega)$ and $\pi_0 \in H^{-1/2}(\Gamma)$, then the problems (14) and (15)-(16) are again equivalent, with the difference that we use here the duality brackets between $[\mathbf{H}_0^{6,2}(\operatorname{\mathbf{curl}}, \Omega)]'$ and $\mathbf{H}_0^{6,2}(\operatorname{\mathbf{curl}}, \Omega)$ in place of the integral on Ω in the right hand side of (15) and the density of $\mathbf{\mathcal{D}}_{\sigma}(\overline{\Omega}) \times \mathcal{D}(\overline{\Omega})$ in the space

 $\boldsymbol{\mathcal{M}} = \left\{ (\boldsymbol{u}, \pi) \in \boldsymbol{H}_{\sigma}^{1}(\Omega) \times L^{2}(\Omega); \ -\Delta \, \boldsymbol{u} + \nabla \, \pi \in [\boldsymbol{H}_{0}^{6,2}(\mathbf{curl}, \, \Omega)]' \right\}$

It is easy now to extend Theorem 2 to the case where $f \in [H_0^{6,2}(\text{curl}, \Omega)]'$, the divergence operator does not vanish and the case of nonhomogeneous boundary conditions.

Theorem

Let $f \in [H_0^{6,2}(\operatorname{curl}, \Omega)]'$, $\operatorname{curl} a \in L^{3/2}(\Omega)$, $\chi \in W^{1,6/5}(\Omega)$, $\pi_0 \in H^{-1/2}(\Gamma)$ and $g \in H^{1/2}(\Gamma)$. Then the problem

$$\begin{cases}
-\Delta \boldsymbol{u} + \operatorname{curl} \boldsymbol{a} \times \boldsymbol{u} + \nabla \pi = \boldsymbol{f} \quad \text{and} \quad \operatorname{div} \boldsymbol{u} = \boldsymbol{\chi} \quad \text{in } \Omega, \\
\boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} \times \boldsymbol{n} \quad \text{on } \Gamma, \\
\pi = \pi_0 \quad \text{on } \Gamma_0, \quad \text{and} \quad \pi = \pi_0 + \alpha_i, \quad i = 1, \dots, I \quad \text{on } \Gamma_i, \\
\int_{\Gamma_i} \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = 0, \quad i = 1, \dots, I,
\end{cases} \tag{19}$$

has a unique solution $(\mathbf{u}, \pi, \alpha) \in \mathbf{H}^1(\Omega) \times L^2(\Omega) \times \mathbb{R}^I$ verifying the estimate:

$$\begin{split} \|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} &\leq \quad C\Big(\|\boldsymbol{f}\|_{[\boldsymbol{H}_{0}^{6,2}(\mathbf{curl},\,\Omega)]'} + \|\pi_{0}\|_{\boldsymbol{H}^{-1/2}(\Gamma)} + \big(1 + \|\mathbf{curl}\,\boldsymbol{a}\|_{L^{3/2}(\Omega)}\big) \times \\ &\times \quad \big(\|\chi\|_{W^{1,6/5}(\Omega)} + \|\,\boldsymbol{g}\,\|_{\boldsymbol{H}^{1/2}(\Gamma)}\big)\Big), \end{split}$$

$$\begin{split} \|\pi\|_{L^{2}(\Omega)} & \leq C \big(1 + \|\mathbf{curl}\, a\|_{L^{3/2}(\Omega)} \big) \Big(\|f\|_{[H_{0}^{6,2}(\mathbf{curl},\,\Omega)]'} + \|\pi_{0}\|_{H^{-1/2}(\Gamma)} + \\ & + \big(1 + \|\mathbf{curl}\, a\|_{L^{3/2}(\Omega)} \big) \times \big(\|\chi\|_{W^{1,6/5}(\Omega)} + \|g\|_{H^{1/2}(\Gamma)} \big) \Big), \end{split}$$

where $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_I)$. Moreover, if $\boldsymbol{f} \in \boldsymbol{L}^{6/5}(\Omega)$, $\pi_0 \in W^{1/6,6/5}(\Gamma)$, $\boldsymbol{g} \in \boldsymbol{W}^{7/6,6/5}(\Gamma)$ and Ω is $\mathcal{C}^{2,1}$, then $\boldsymbol{u} \in \boldsymbol{W}^{2,6/5}(\Omega)$ and $\pi \in W^{1,6/5}(\Omega)$. • Strong Solutions when $p \ge 6/5$.

In the rest of this talk, we suppose that Ω is $\mathcal{C}^{2,1}$ and we are interested in the study of strong solutions for the system (\mathcal{OS}_N) . When $p < \frac{3}{2}$, because the embedding $W^{2,p}(\Omega) \hookrightarrow W^{1,p*}(\Omega)$, the term **curl** $\boldsymbol{a} \times \boldsymbol{u} \in L^p(\Omega)$ and we can use the regularity results on the Stokes problem. But this is not more the case when $p \geq \frac{3}{2}$ and that **curl** \boldsymbol{a} belongs only to $\boldsymbol{L}^{3/2}(\Omega)$.

We give in the following theorem the good conditions to ensure the existence of strong solutions.

Theorem

Let $p \geq 6/5$,

$$\boldsymbol{f} \in \boldsymbol{L}^p(\Omega), \ \pi_0 \in W^{1-1/p,p}(\Gamma), \ \operatorname{\mathbf{curl}} \boldsymbol{a} \in \boldsymbol{L}^s(\Omega)$$

with

$$s = \frac{3}{2}$$
 if $p < \frac{3}{2}$, $s = p$ if $p > \frac{3}{2}$, $s = \frac{3}{2} + \varepsilon$ if $p = \frac{3}{2}$, (20)

for $\varepsilon > 0$ arbitrary. Then the solution (\boldsymbol{u}, π) given by the previous theorem belongs to $\boldsymbol{W}^{2,p}(\Omega) \times W^{1,p}(\Omega)$ and satisfies the estimate:

 $\|\boldsymbol{u}\|_{\boldsymbol{W}^{2,p}(\Omega)} + \|\pi\|_{W^{1,p}(\Omega)} \le C \big(1 + \|\mathbf{curl}\,\boldsymbol{a}\|_{L^{s}(\Omega)}\big) \big(\|\boldsymbol{f}\|_{L^{p}(\Omega)} + \|\pi_{0}\|_{W^{1-1/p,p}(\Gamma)}\big).$

• Generalized Solutions with (p > 2):

Theorem

Let p > 2. Let $\mathbf{f} \in [\mathbf{H}_0^{r',p'}(\operatorname{\mathbf{curl}}, \Omega)]', \ \chi \in W^{1,r}(\Omega)$ and $\mathbf{g} \in \mathbf{W}^{1-1/p,p}(\Gamma)$. We suppose that $\pi_0 \in W^{1-1/r,r}(\Gamma)$ and $\operatorname{\mathbf{curl}} \mathbf{a} \in \mathbf{L}^s(\Omega)$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{3}$ and s satisfies:

$$s = rac{3}{2} \ ext{if} \ 2 3,$$

for some arbitrary $\varepsilon > 0$. Then the problem (19) has a unique solution $(\boldsymbol{u}, \pi, \boldsymbol{\alpha}) \in \boldsymbol{W}^{1,p}(\Omega) \times W^{1,r}(\Omega) \times \mathbb{R}^{I}$ satisfying the estimate

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} + \|\boldsymbol{\pi}\|_{W^{1,r}(\Omega)} \leq C \left(1 + \|\mathbf{curl}\,\boldsymbol{a}\|_{\boldsymbol{L}^{s}(\Omega)}\right)^{2} \left(\|\boldsymbol{f}\|_{[\boldsymbol{H}_{0}^{r',p'}(\mathbf{curl},\Omega)]'} + \|\boldsymbol{g}\|_{\boldsymbol{W}^{1-1/p,p}(\Gamma)} + \|\boldsymbol{\pi}_{0}\|_{W^{1-1/r,r}(\Gamma)} + \|\boldsymbol{\chi}\|_{W^{1,r}(\Omega)}\right)$$
(21)

where $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_I).$

• Generalized Solutions (p < 2):

Using a duality argument, we obtain the following result :

Theorem

We suppose that p < 2. Soit $\boldsymbol{f} \in [\boldsymbol{H}_0^{r',p'}(\operatorname{curl}, \Omega)]'$, curl $\boldsymbol{a} \in \boldsymbol{L}^s(\Omega)$ and $\pi_0 \in W^{1-1/r,r}(\Gamma)$ with

$$r = 1 + \epsilon'$$
 if $p < \frac{3}{2}$, $r = \frac{9 + 6\epsilon}{9 + 2\epsilon}$ if $p = \frac{3}{2}$ and $r = \frac{3p}{3+p}$ if $\frac{3}{2} , (22)$

$$s = (1+\epsilon')\frac{3p}{4p-3-\epsilon'(3-p)} \text{ if } p < \frac{3}{2}, \ s = \frac{3}{2}+\epsilon \text{ if } p = \frac{3}{2} \text{ and } s = \frac{3}{2} \text{ if } \frac{3}{2} < p < 2$$
(23)

where $\epsilon, \epsilon' > 0$ are arbitrary. Problem (\mathcal{OS}_N) has a unique solution $(u, \pi, \alpha) \in W^{1,p}(\Omega) \times W^{1,r}(\Omega) \times \mathbb{R}^I$ satisfying the estimate:

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p}(\Omega)} \leq C(1 + \|\mathbf{curl}\,\boldsymbol{a}\|_{\boldsymbol{L}^{s}(\Omega)})^{2} (\|\boldsymbol{f}\|_{[\boldsymbol{H}_{0}^{r',p'}(\mathbf{curl},\Omega)]'} + \|\pi_{0}\|_{W^{1-1/r,r}(\Omega)}),$$

$$\|\pi\|_{W^{1,r}(\Omega)} \leq C(1 + \|\mathbf{curl}\, a\|_{L^{s}(\Omega)})^{3}(\|f\|_{[H_{0}^{r',p'}(\mathbf{curl},\Omega)]'} + \|\pi_{0}\|_{W^{1-1/r,r}(\Omega)})$$

The Navier-Stokes problem (\mathcal{NS}_N)

$$\begin{cases} -\Delta \, \boldsymbol{u} + \operatorname{\mathbf{curl}} \, \boldsymbol{u} \times \boldsymbol{u} + \nabla \, \boldsymbol{\pi} = \boldsymbol{f} & \text{in } \Omega, \\ \operatorname{div} \, \boldsymbol{u} = \chi & \text{in } \Omega, \end{cases}$$

$$(\mathcal{NS}_N)$$

$$\boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g}$$
 on Γ ,

$$\pi = \pi_0 \text{ on } \Gamma_i \text{ and } \pi = \pi_0 + c_i \quad \text{ on } \Gamma_i,$$
$$\int_{\Gamma_i} \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = 0, \ i = 1, \dots, I,$$

In the search of a proof of the existence of generalized solution for the Navier-Stokes equations (\mathcal{NS}_N) , we consider the case of small enough data.

Theorem

Let
$$\mathbf{f} \in [\mathbf{H}_{0}^{r',p'}(\operatorname{curl}, \Omega)]', \ \chi \in W^{1,r}(\Omega), \ \mathbf{g} \in \mathbf{W}^{1-1/p,p}(\Gamma), \ \pi_{0} \in W^{1-1/r,r}(\Gamma)$$

with $\frac{3}{2} < p$ and $r = \frac{3p}{3+p}$.
i) There exists a constant $\alpha_{1} > 0$ such that, if
 $\|\mathbf{f}\|_{[\mathbf{H}_{0}^{r',p'}(\operatorname{curl},\Omega)]'} + \|\chi\|_{W^{1,r}(\Omega)} + \|\mathbf{g}\|_{W^{1-1/p,p}(\Gamma)} + \|\pi_{0}\|_{W^{1-1/r,r}(\Gamma)} \leq \alpha_{1},$
then, there exists a solution $(\mathbf{u}, \pi, \mathbf{c}) \in \mathbf{W}^{1,p}(\Omega) \times W^{1,r}(\Omega) \times \mathbb{R}^{I}$ to problem
 (\mathcal{NS}_{N}) verifying the estimate
 $\|\mathbf{u}\|_{W^{1,p}(\Omega)} \leq C(\|\mathbf{f}\|_{[\mathbf{H}_{0}^{r',p'}(\operatorname{curl},\Omega)]'} + \|\chi\|_{W^{1,r}(\Omega)} + \|\mathbf{g}\|_{W^{1-1/p,p}(\Gamma)} + \|\pi_{0}\|_{W^{1-1/r,r}(\Gamma)}),$
with $c_{i} = \langle \mathbf{f}, \nabla q_{i} \rangle_{\Omega_{r',p'}} + \int_{\Gamma} (\chi - \pi_{0}) \nabla q_{i}^{N} \cdot \mathbf{n} - \int_{\Omega} (\operatorname{curl} \mathbf{u} \times \mathbf{u}) \cdot \nabla q_{i}^{N}.$
i) Moreover, there exists a constant $\alpha_{2} \in]0, \alpha_{1}]$ such that this solution is unique, if

$$\|f\|_{[H_0^{r',p'}(\operatorname{curl},\Omega)]'} + \|\chi\|_{W^{1,r}(\Omega)} + \|g\|_{W^{1-1/p,p}(\Gamma)} + \|\pi_0\|_{W^{1-1/r,r}(\Gamma)} \le \alpha_2.$$

For Further Reading

- C. AMROUCHE, A. REJAIBA, L^p-Theory for Stokes and Navier-Stokes Equations with Navier Boundary Condition, Journal Diff. Equat., 256 (2014) 1515–1547.
 - C. AMROUCHE, C. BERNARDI, M. DAUGE, V. GIRAULT, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Applied Sc., Vol. 21, (1998), 823–864.
 - C. AMROUCHE, M. ÁNGELES RODRÍGUEZ-BELLIDO Stationary Stokes, Oseen and Navier-Stokes Equations with Singular Data, Arch. Rational. Mech. Anal., 199 (2011), 597–651.

C. AMROUCHE, N. SELOULA, L^p -theory for vector potentials and Sobolev's inequalities for vector fields. Application to the Stokes problem's with pressure boundary conditions, M3AS, Volume 23-1, (2013), 37–92.

C. AMROUCHE, N. SELOULA, On the Stokes equations with the Navier-type boundary conditions, Differential Equations and Applications, Volume 3, Number 4, (2011), 581-607.