Lecture IV

Stationary Stokes and Navier-Stokes Equations with Different Physical Boundary Conditions

Outline

I. Stokes Equations with Normal Boundary Conditions
II. Stokes Equations with Pressure and Tangential Boundary Conditions
III. Oseen and Navier-Stokes Equations with Pressure and Tangential Boundary Conditions

Introduction and motivation

We are interested by the following Stokes equations:

$$
\begin{aligned}
-\Delta u+\nabla \pi=\boldsymbol{f} & \text { in } \Omega \\
\operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega
\end{aligned}
$$

with the following nonhomogeneous boundary conditions:

$$
\begin{equation*}
\boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n} \text { and } \pi=\pi_{0} \quad \text { on } \Gamma, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{u} \cdot \boldsymbol{n}=g \text { and } \operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n} \quad \text { on } \Gamma, \tag{2}
\end{equation*}
$$

or the following Navier boundary condition

$$
\begin{equation*}
\boldsymbol{u} \cdot \boldsymbol{n}=g \quad \text { and } \quad 2[\mathbf{D}(\boldsymbol{u}) \boldsymbol{n}]_{\boldsymbol{\tau}}+\alpha \boldsymbol{u}_{\boldsymbol{\tau}}=\boldsymbol{h} \tag{3}
\end{equation*}
$$

We will study also here the case of the Navier-Stokes equations:
Find $\boldsymbol{u}, \pi, \alpha_{1}, \ldots, \alpha_{I}$, with $\alpha_{i} \in \mathbb{R}$

$$
\begin{cases}-\Delta \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla \pi=\boldsymbol{f} \quad \text { and } \quad \nabla \cdot \boldsymbol{u}=0 & \text { in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n} & \text { on } \Gamma, \\ \pi=\pi_{0} \text { on } \Gamma_{0} \text { and } \pi=\pi_{0}+\alpha_{i} & \text { on } \Gamma_{i}, i=1, \ldots, I\end{cases}
$$

where we suppose that Ω is an open set possibly multiply connected sufficiently regular with a boundary Γ possibly non connected. We denote $\Gamma=\bigcup_{i=0}^{I} \Gamma_{i}$ with Γ_{i} the connected components of Γ and $\Sigma=\bigcup_{j=1}^{J} \Sigma_{j}$ and Σ_{j} a finite number of cuts.
$\Omega^{\circ}=\Omega \backslash \bigcup_{j=1}^{J} \Sigma_{j}$ is simply connected.

Considering for example the case of the Stokes equations with the homogeneous boundary conditions

$$
\left(\mathcal{S}_{T}^{0}\right) \quad\left\{\begin{array}{lll}
-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f} & \text { and } \quad \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega \\
\boldsymbol{u} \cdot \boldsymbol{n}=0, \quad \text { and } \quad \text { curl } \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0} & \text { on } \Gamma .
\end{array}\right.
$$

Because these boundary conditions, we write

$$
-\Delta u=\operatorname{curl} \operatorname{curl} u-\nabla \operatorname{div} u
$$

For the variational formulation, we will consider the following spaces:

$$
\boldsymbol{V}=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \operatorname{div} \boldsymbol{v}=0, \boldsymbol{v} \cdot \boldsymbol{n}=0 \text { on } \Gamma\right\}
$$

We will prove later that the Stokes problem $\left(\mathcal{S}_{T}^{0}\right)$, with $\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega), \boldsymbol{u} \in \boldsymbol{V}$ and $\pi \in L^{2}(\Omega)$, is equivalent to

$$
\left\{\begin{array}{l}
\text { Find } \boldsymbol{u} \in \boldsymbol{V} \text { such that } \\
\forall \boldsymbol{v} \in \boldsymbol{V}, \quad \int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} \mathrm{d} \boldsymbol{x}=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d \boldsymbol{x}
\end{array}\right.
$$

Questions:

- Because \boldsymbol{u} is apparently only in $\boldsymbol{H}^{1}(\Omega)$, how to give a sense to the following boundary condition

$$
\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0} \quad \text { on } \Gamma ?
$$

- The bilinear form is it coercive to apply the Lax-Milgram lemma?

We know (see Lecture I) that if Ω is simply connected, we have:

$$
\forall \boldsymbol{v} \in \boldsymbol{V}, \quad\|\boldsymbol{v}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C\|\operatorname{curl} \boldsymbol{v}\|_{L^{2}(\Omega)} .
$$

- What happens if Ω is not simply connected ?
- Can we find generalized solution in $\boldsymbol{W}^{1, p}(\Omega)$ with $1<p<\infty$?
- Can we find strong solution in $\boldsymbol{W}^{2, p}(\Omega)$ with $1<p<\infty$?
- Can we find very weak solution in $\boldsymbol{L}^{p}(\Omega)$ with $1<p<\infty$?

II. Stokes problems with normal boundary conditions

Consider the following Stokes problem:

$$
\left(\mathcal{S}_{T}\right) \begin{cases}-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f} & \text { in } \Omega, \\ \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n}=g, \operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n} & \text { on } \Gamma, \\ \langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{j}}=0, & 1 \leq j \leq J .\end{cases}
$$

Lemma 2.1

Proof. To simplify, suppose $p=2$. For any $\chi \in H^{2}(\Omega)$, Green formulas yield

II. Stokes problems with normal boundary conditions

Consider the following Stokes problem:

$$
\left(\mathcal{S}_{T}\right) \begin{cases}-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n}=g, \operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{h} \times \boldsymbol{n} & \text { on } \Gamma \\ \langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{j}}=0, & 1 \leq j \leq J\end{cases}
$$

Lemma 2.1

Suppose that $\boldsymbol{\psi} \in \boldsymbol{W}^{1, p}(\Omega)$. Then

$$
\operatorname{curl} \boldsymbol{\psi} \cdot \boldsymbol{n}=\operatorname{div}_{\Gamma}(\boldsymbol{\psi} \times \boldsymbol{n}) \quad \text { in } \boldsymbol{W}^{-1 / p, p}(\Gamma) .
$$

Proof. To simplify, suppose $p=2$. For any $\chi \in H^{2}(\Omega)$, Green formulas yield

$$
\begin{aligned}
\int_{\Omega} \operatorname{curl} \psi \cdot \operatorname{grad} \chi & =\langle\operatorname{curl} \psi \cdot \boldsymbol{n}, \chi\rangle_{\Gamma} \\
\int_{\Omega} \operatorname{curl} \psi \cdot \operatorname{grad} \chi & =-\langle\boldsymbol{\psi} \times \boldsymbol{n}, \operatorname{grad} \chi\rangle_{\Gamma} \\
& =\left\langle\operatorname{div}_{\Gamma}(\boldsymbol{\psi} \times \boldsymbol{n}), \chi\right\rangle_{\Gamma}
\end{aligned}
$$

Applying the divergence operator in Problem $\left(\mathcal{S}_{T}\right)$, we get firstly

$$
\Delta \pi=\operatorname{div} f \quad \text { in } \Omega
$$

Setting then $\boldsymbol{\psi}=\operatorname{curl} \boldsymbol{u}$, we have

$$
-\Delta u=\operatorname{curl} \psi \quad \text { in } \Omega
$$

and

$$
-\Delta u \cdot \boldsymbol{n}=\operatorname{curl} \psi \cdot \boldsymbol{n}=(\boldsymbol{f}-\nabla \pi) \cdot \boldsymbol{n}
$$

So formally the pressure satisfies the following Neumann boundary condition:

$$
\frac{\partial \pi}{\partial \boldsymbol{n}}=\boldsymbol{f} \cdot \boldsymbol{n}-\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}) \quad \text { on } \Gamma
$$

So, we can solve the pressure directly in the Stokes problem $\left(\mathcal{S}_{T}\right)$.

Let us introduce the following space:

$$
\boldsymbol{H}_{0}^{r, p}(\operatorname{div}, \Omega)=\left\{\boldsymbol{\varphi} \in \boldsymbol{L}^{r}(\Omega) ; \operatorname{div} \boldsymbol{\varphi} \in L^{p}(\Omega), \boldsymbol{\varphi} \cdot \boldsymbol{n}=0 \text { on } \Gamma\right\}
$$

which is a Banach space for the norm

$$
\|\boldsymbol{\varphi}\|_{\boldsymbol{H}_{0}^{r, p}(\operatorname{div}, \Omega)}=\|\boldsymbol{\varphi}\|_{\boldsymbol{L}^{r}(\Omega)}+\|\operatorname{div} \boldsymbol{\varphi}\|_{\boldsymbol{L}^{p}(\Omega)}
$$

We can prove that

$$
\boldsymbol{D}(\Omega) \quad \text { is dense in } \quad \boldsymbol{H}_{0}^{r, p}(\operatorname{div}, \Omega)
$$

So its dual is then a subspace of $\boldsymbol{D}^{\prime}(\Omega)$ which can be characterized as:

$$
\left[\boldsymbol{H}_{0}^{r, p}(\operatorname{div}, \Omega)\right]^{\prime}=\left\{\boldsymbol{F}+\operatorname{grad} \boldsymbol{\psi} ; \boldsymbol{F} \in \boldsymbol{L}^{r^{\prime}}(\Omega), \psi \in L^{p^{\prime}}(\Omega)\right\}
$$

Lemma 2.2

Suppose that

$$
\boldsymbol{z} \in\left[\boldsymbol{H}_{0}^{6,2}(\operatorname{div}, \Omega)\right]^{\prime}
$$

that means that

$$
\boldsymbol{z}=\nabla \pi-\boldsymbol{f}, \quad \text { with } \quad \pi \in L^{2}(\Omega) \quad \text { and } \boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega)
$$

and assume $\operatorname{div} \boldsymbol{z}=0$ in Ω. Then

$$
\boldsymbol{z} \cdot \boldsymbol{n} \in H^{-3 / 2}(\Gamma)
$$

and for any $\chi \in H^{2}(\Omega)$ such that $\frac{\partial \chi}{\partial n}=0$, we have

$$
\langle\boldsymbol{z}, \nabla \chi\rangle_{\left[\boldsymbol{H}_{0}^{6,2}(\mathrm{div}, \Omega)\right]^{\prime} \times \boldsymbol{H}_{0}^{6,2}(\mathrm{div}, \Omega)}=\langle\boldsymbol{z} \cdot \boldsymbol{n}, \chi\rangle_{H^{-3 / 2}(\Gamma) \times H^{3 / 2}(\Gamma)}
$$

Proposition 2.3

For any

$$
\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega), \quad \boldsymbol{h} \in \boldsymbol{H}^{-1 / 2}(\Gamma)
$$

there exists $\pi \in L^{2}(\Omega)$, unique up an additive constant, such that

$$
\begin{equation*}
\Delta \pi=\operatorname{div} \boldsymbol{f} \quad \text { in } \Omega, \quad \frac{\partial \pi}{\partial \boldsymbol{n}}=\boldsymbol{f} \cdot \boldsymbol{n}-\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}) \quad \text { on } \Gamma \tag{4}
\end{equation*}
$$

Proof.

Problem (4) is equivalent to the following very weak formulation: for any $\chi \in H^{2}(\Omega)$ such that $\frac{\partial \chi}{\partial n}=0$

$$
\int_{\Omega} \pi \Delta \chi=-\int_{\Omega} \boldsymbol{f} \cdot \nabla \chi+\left\langle\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}), \chi\right\rangle_{H^{-3 / 2}(\Gamma) \times H^{3 / 2}(\Gamma)}
$$

that we solve by duality thanks to the H^{2}-regularity for the strong Neumann problem with the RHS in $L^{2}(\Omega)$.

- To solve the Stokes problem $\left(\mathcal{S}_{T}\right)$, without loss generality, we suppose that $g=0$.
- We consider here only the hilbertian case: we search the velocity in $H^{1}(\Omega)$ and the pressure in $L^{2}(\Omega)$. For that, we will suppose that

$$
\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega), \quad \boldsymbol{h} \in \boldsymbol{H}^{-1 / 2}(\Gamma) .
$$

- We solve first the following Neumann problem:

There exists a very weak solution $\pi \in \boldsymbol{L}^{2}(\Omega)$, unique up an additive constant, satisfying:
$\Delta \pi=\operatorname{div} \boldsymbol{f} \quad$ in $\Omega, \quad(\nabla \pi-\boldsymbol{f}) \cdot \boldsymbol{n}=-\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n}) \quad$ on Γ

Remark

- Unlike the case of the Stokes problem with Dirichlet boundary condition, it appears that when

$$
\operatorname{div} \boldsymbol{f}=0 \quad \text { in } \Omega \quad \text { and } \quad \boldsymbol{f} \cdot \boldsymbol{n}-\operatorname{div}_{\Gamma}(\boldsymbol{h} \times \boldsymbol{n})=0 \quad \text { on } \Gamma
$$

the pressure π can be constant.

Setting

$$
\boldsymbol{H}=\boldsymbol{H}_{0}^{6,2}(\operatorname{div}, \Omega)
$$

and let us consider the following space

$$
\boldsymbol{E}(\Delta, \Omega)=\left\{\boldsymbol{v} \in \boldsymbol{H}^{1}(\Omega), \Delta \boldsymbol{v} \in \boldsymbol{H}^{\prime}\right\}
$$

which is a Banach space for the graph norm.
We have the following preliminary results:

$$
D(\bar{\Omega}) \quad \text { is dense in } \boldsymbol{E}(\Delta, \Omega)
$$

As a consequence, we have the following result.

Proposition 2.4

The linear mapping $\gamma:\left.\boldsymbol{v} \rightarrow \boldsymbol{\operatorname { c u r l }} \boldsymbol{v}\right|_{\Gamma} \times \boldsymbol{n}$ defined on $\mathcal{D}(\bar{\Omega})$ can be extended to a linear continuous mapping

$$
\gamma: \boldsymbol{E}(\Delta, \Omega) \longrightarrow \boldsymbol{H}^{-\frac{1}{2}}(\Gamma) .
$$

Moreover, we have the Green formula: for any $\boldsymbol{v} \in \boldsymbol{E}(\Delta, \Omega)$ and $\boldsymbol{\varphi} \in \boldsymbol{H}_{T}^{1}(\Omega)$ with $\operatorname{div} \varphi=0$ in Ω,

$$
-\langle\Delta v, \varphi\rangle_{\boldsymbol{H}^{\prime} \times \boldsymbol{H}}=\int_{\Omega} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{\varphi} \mathrm{d} \boldsymbol{x}-\langle\operatorname{curl} \boldsymbol{v} \times \boldsymbol{n}, \boldsymbol{\varphi}\rangle_{\Gamma}, \quad \text { (5) }
$$

where the duality on Γ is defined by $\langle\cdot, \cdot\rangle_{\Gamma}=\langle\cdot, \cdot\rangle_{\boldsymbol{H}^{-\frac{1}{2}}(\Gamma) \times \boldsymbol{H}^{\frac{1}{2}}(\Gamma)}$.

Proposition 2.5 (Weak and Strong solutions of $\left(S_{T}\right)$)

i) Let $g=0$,

$$
\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega), \quad \boldsymbol{h} \times \boldsymbol{n} \in \boldsymbol{H}^{-1 / 2}(\Gamma)
$$

satisfying the following compatibility condition:
$\forall \boldsymbol{v} \in \boldsymbol{K}_{T}^{2}(\Omega), \quad \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \boldsymbol{x}+\langle\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{v}\rangle_{\boldsymbol{H}^{-1 / 2}(\Gamma) \times \boldsymbol{H}^{1 / 2}(\Gamma)}=0$.
Then, the problem $\left(S_{T}\right)$ has a unique solution $(\boldsymbol{u}, \pi) \in \boldsymbol{H}^{1}(\Omega) \times L^{2}(\Omega) / \mathbb{R}$ satisying the estimate:
$\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)}+\|\pi\|_{L^{2}(\Omega) / \mathbb{R}} \leq C\left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{6 / 5}(\Omega)}+\|\boldsymbol{h} \times \boldsymbol{n}\|_{\boldsymbol{H}^{-1 / 2}(\Gamma)}\right)$.
ii) If moreover Ω is of class $\mathcal{C}^{2,1}$ and $\boldsymbol{h} \times \boldsymbol{n} \in \boldsymbol{W}^{1 / 6,6 / 5}(\Gamma)$, then the solution (\boldsymbol{u}, π) belongs to $\boldsymbol{W}^{2,6 / 5}(\Omega) \times W^{1,6 / 5}(\Omega)$. If $f \in \boldsymbol{L}^{2}(\Omega)$ and $\boldsymbol{h} \times \boldsymbol{n} \in \boldsymbol{H}^{1 / 2}(\Gamma)$, then the solution (\boldsymbol{u}, π) belongs to $\boldsymbol{H}^{2}(\Omega) \times H^{1}(\Omega)$.

Proof.

- Observe first that if $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ is solution of Problem S_{T}, then $\Delta \boldsymbol{u} \in \boldsymbol{H}^{\prime}$ and then

$$
\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n} \in \boldsymbol{H}^{-1 / 2}(\Gamma)
$$

So the boundary condition of the tangential component of the vorticity of \boldsymbol{u} has a sense.

To prove the existence of weak solution, we will use Lax-Milgram Lemma.

It is easy to see that if $\boldsymbol{u} \in \boldsymbol{V}$ is solution of Problem $\left(S_{T}\right)$, then
$\left(\mathcal{P}_{T}^{0}\right) \quad \forall \boldsymbol{v} \in \boldsymbol{V}, \int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} \mathrm{d} \boldsymbol{x}=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d \boldsymbol{x}+\langle\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{v}\rangle_{\boldsymbol{H}^{-1 / 2}(\Gamma)} \times \boldsymbol{H}^{1 / 2}(\Gamma)$.
where we recall that
$\boldsymbol{V}=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \operatorname{div} \boldsymbol{v}=0, \boldsymbol{v} \cdot \boldsymbol{n}=0\right.$ and $\left.\langle\boldsymbol{v} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{j}}=0,1 \leq j \leq J\right\}$,
and

$$
\boldsymbol{V} \hookrightarrow \boldsymbol{H}^{1}(\Omega) \hookrightarrow \boldsymbol{L}^{6}(\Omega) .
$$

(observe the compatibility condition)

- In fact, Problem $\left(\mathcal{P}_{T}^{0}\right)$ is equivalent to the problem: Find $\boldsymbol{u} \in \boldsymbol{V}$ such that
$\left(\mathcal{Q}_{T}^{0}\right) \quad \forall \boldsymbol{w} \in \boldsymbol{W}, \quad \int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \mathbf{c u r l} \boldsymbol{w} \mathrm{d} \boldsymbol{x}=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d \boldsymbol{x}+\langle\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{v}\rangle_{\Gamma}$
where

$$
\boldsymbol{W}=\left\{\boldsymbol{w} \in \boldsymbol{L}^{2}(\Omega), \operatorname{div} \boldsymbol{v}=0, \operatorname{curl} \boldsymbol{w} \in \boldsymbol{L}^{2}(\Omega), \boldsymbol{w} \cdot \boldsymbol{n}=0\right\}
$$

- Taking $\boldsymbol{w} \in \mathcal{D}(\Omega)$, with div $\boldsymbol{w}=0$, then by de Rham's Theorem we deduce that there exits $\pi \in L^{2}(\Omega)$ such that

$$
-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f} \quad \text { in } \Omega
$$

- Next multiplying this equation by $\boldsymbol{w} \in \boldsymbol{W}$ and using Green-Formula, we deduce that

$$
\forall \boldsymbol{w} \in \boldsymbol{W}, \quad\langle\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}, \boldsymbol{w}\rangle_{\Gamma}=\langle\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{w}\rangle_{\Gamma}
$$

Now, for any $\boldsymbol{\mu} \in \boldsymbol{H}^{1 / 2}(\Gamma)$, there exists

$$
\boldsymbol{w} \in \boldsymbol{W} \quad \text { with } \boldsymbol{w}=\boldsymbol{\mu}_{\tau} \quad \text { on } \Gamma
$$

Consequently

$$
\langle\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}, \boldsymbol{\mu}\rangle_{\Gamma}=\langle\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{\mu}\rangle_{\Gamma} .
$$

III. Stokes Equations with Pressure Boundary Condition

Here, we decompose the Stokes problem in two problems

$$
\left(\mathcal{S}_{N}^{0}\right) \begin{cases}-\Delta \boldsymbol{u}=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega \\ \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0}, & \text { on } \Gamma \\ \langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leq i \leq I .\end{cases}
$$

and

$$
\left(\mathcal{S}_{N}^{1}\right)\left\{\begin{array}{lll}
-\Delta \boldsymbol{w}+\nabla \theta=\mathbf{0} & \text { in } \Omega, \\
\operatorname{div} \boldsymbol{w}=0 & \text { in } \Omega, \\
\boldsymbol{w} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n}, & \theta=\theta_{0} & \text { on } \Gamma, \\
\langle\boldsymbol{w} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, & 1 \leq i \leq I . &
\end{array}\right.
$$

- The pressure can be found independently of the velocity as a solution of the Dirichlet problem:

$$
\Delta \theta=0 \text { in } \Omega, \quad \theta=\theta_{0} \text { on } \Gamma
$$

- We set $\boldsymbol{G}=-\nabla \theta$. Then, \boldsymbol{u} and \boldsymbol{w} are solutions respectively of

$$
\left(\mathcal{E}_{N}^{0}\right) \begin{cases}-\Delta \boldsymbol{u}=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega \\ \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0}, & \text { on } \Gamma \\ \langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, & 1 \leq i \leq I .\end{cases}
$$

and

$$
\left(\mathcal{E}_{N}^{1}\right) \begin{cases}-\Delta \boldsymbol{w}=\boldsymbol{G} & \text { in } \Omega, \\ \operatorname{div} \boldsymbol{w}=0 & \text { in } \Omega \\ \boldsymbol{w} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n}, & \text { on } \Gamma, \\ \langle\boldsymbol{w} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leq i \leq I .\end{cases}
$$

- We are reduced to solve Problem $\left(\mathcal{E}_{N}^{0}\right)$ and $\operatorname{Problem}\left(\mathcal{E}_{N}^{1}\right)$.

Study of the elliptic problem
$\left(\mathcal{E}_{N}^{0}\right) \begin{cases}-\Delta \boldsymbol{u}=\boldsymbol{f} & \text { in } \Omega, \\ \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0}, & \text { on } \Gamma, \\ \langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leq i \leq I .\end{cases}$

Remarks:

- The condition $\operatorname{div} \boldsymbol{f}=0$ in Ω is necessary to solve $\left(E_{N}^{0}\right)$.
- The condition $\operatorname{div} \boldsymbol{u}=0$ in $\Omega \Longleftrightarrow \operatorname{div} \boldsymbol{u}=0$ on Γ on the one hand. On the other hand, since

$$
\operatorname{div} \boldsymbol{u}=\operatorname{div}_{\Gamma} \boldsymbol{u}_{\boldsymbol{\tau}}+K \boldsymbol{u} \cdot \boldsymbol{n}+\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} \cdot \boldsymbol{n} \text { sur } \Gamma
$$

where K denotes the mean curvature of Γ, the condition $\operatorname{div} \boldsymbol{u}=0$ on Γ is itself equivalent, if $\boldsymbol{u} \times \boldsymbol{n}=\mathbf{0}$ on Γ, to the Fourier-Robin condition:

$$
K \boldsymbol{u} \cdot \boldsymbol{n}+\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} \cdot \boldsymbol{n}=0 \quad \text { on } \Gamma .
$$

That means that the problem $\left(E_{N}^{0}\right)$ is equivalent to the following:

$$
\begin{cases}-\Delta \boldsymbol{u}=\boldsymbol{f} & \text { in } \Omega \\ \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0} & \text { on } \Gamma \\ K \boldsymbol{u} \cdot \boldsymbol{n}+\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} \cdot \boldsymbol{n}=0 & \text { on } \Gamma .\end{cases}
$$

Proposition 3.1 (Weak and Strong solutions of $\left(E_{N}^{0}\right)$)

i) Let $\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega)$ satisfying the following compatibility conditions:

$$
\operatorname{div} \boldsymbol{f}=0 \quad \text { in } \Omega \quad \text { and } \forall \boldsymbol{v} \in \boldsymbol{K}_{T}^{2}(\Omega), \quad \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \boldsymbol{x}=0
$$

Then, the problem $\left(E_{N}^{0}\right)$ has a unique solution $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ satisying the estimate:

$$
\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C\|\boldsymbol{f}\|_{\boldsymbol{L}^{6 / 5}(\Omega)} .
$$

ii) If moreover Ω is of class $\mathcal{C}^{2,1}$, then the solution \boldsymbol{u} belongs to $\boldsymbol{W}^{2,6 / 5}(\Omega)$.

Proof. We use here only Method 1 of vector potential.

- We have $\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega)$ and

$$
\operatorname{div} \boldsymbol{f}=0 \quad \text { in } \Omega, \quad\langle\boldsymbol{f} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 0 \leq i \leq I
$$

- We know that if Ω is of class $\mathcal{C}^{1,1}$, there exists a unique vector potential $\boldsymbol{\psi} \in \boldsymbol{W}^{1,6 / 5}(\Omega) \hookrightarrow \boldsymbol{L}^{2}(\Omega)$ such that

$$
\begin{array}{r}
\boldsymbol{f}=\operatorname{curl} \boldsymbol{\psi} \quad \text { and } \quad \operatorname{div} \boldsymbol{\psi}=0 \text { in } \Omega, \\
\boldsymbol{\psi} \cdot \boldsymbol{n}=0 \quad \text { on } \Gamma, \\
\langle\boldsymbol{\psi} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{j}}=0,1 \leq j \leq J .
\end{array}
$$

with the estimate

$$
\|\boldsymbol{\psi}\|_{\boldsymbol{W}^{1,6 / 5}(\Omega)} \leq C\|\boldsymbol{f}\|_{\boldsymbol{L}^{6 / 5}(\Omega)} .
$$

- Now because $\boldsymbol{\psi} \in L^{2}(\Omega)$, with

$$
\operatorname{div} \boldsymbol{\psi}=0 \text { in } \Omega, \quad \boldsymbol{\psi} \cdot \boldsymbol{n}=0,\langle\boldsymbol{\psi} \cdot \boldsymbol{n},, 1\rangle_{\Sigma_{j}}=0,1 \leq j \leq J
$$

there exists a unique vector potential $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ such that

$$
\begin{array}{r}
\boldsymbol{\psi}=\operatorname{curl} \boldsymbol{u} \quad \text { and } \quad \operatorname{div} \boldsymbol{u}=0 \text { in } \Omega, \\
\boldsymbol{u} \times \boldsymbol{n}=0 \quad \text { on } \Gamma, \\
\langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0,1 \leq i \leq I .
\end{array}
$$

with the estimate

$$
\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C\|\boldsymbol{\psi}\|_{L^{2}(\Omega)} \leq C\|\boldsymbol{f}\|_{\boldsymbol{L}^{6 / 5}(\Omega)} .
$$

- Moreover if Ω is of class $\mathcal{C}^{2,1}$, then $\boldsymbol{u} \in \boldsymbol{W}^{2,6 / 5}(\Omega)$.

Study of the elliptic problem

$$
\left(\mathcal{E}_{N}^{1}\right) \begin{cases}-\Delta \boldsymbol{w}=\boldsymbol{G} & \text { in } \Omega \\ \operatorname{div} \boldsymbol{w}=0 & \text { in } \Omega \\ \boldsymbol{w} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n}, & \text { on } \Gamma, \\ \langle\boldsymbol{w} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leq i \leq I .\end{cases}
$$

where

$$
\boldsymbol{G}=-\nabla \theta,
$$

and where $\theta \in W^{1 / 6,6 / 5}(\Omega)$ is solution of the following Dirichlet problem:

$$
\Delta \theta=0 \text { in } \Omega, \quad \theta=\theta_{0} \quad \text { on } \Gamma .
$$

with $\theta_{0} \in W^{1,6 / 5}(\Gamma)$

Proposition 3.2 (Weak and Strong solutions of $\left(E_{N}^{1}\right)$)

i) Let

$$
\boldsymbol{g} \times \boldsymbol{n} \in \boldsymbol{H}^{1 / 2}(\Gamma) \quad \text { and } \quad \theta_{0} \in W^{1 / 6,6 / 5}(\Gamma)
$$

satisfying the following compatibility condition:

$$
\forall \boldsymbol{v} \in \boldsymbol{K}_{N}^{2}(\Omega), \quad \int_{\Gamma} \theta_{0} \boldsymbol{v} \cdot \boldsymbol{n}=0
$$

Then, the problem $\left(E_{N}^{1}\right)$ has a unique solution $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ satisying the estimate:

$$
\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C\left(\|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{H}^{1 / 2}(\Gamma)}+\left\|\theta_{0}\right\|_{W^{1 / 6,6 / 5}(\Gamma)}\right) .
$$

ii) If

$$
\boldsymbol{g} \times \boldsymbol{n} \in \boldsymbol{H}^{3 / 2}(\Gamma) \quad \text { and } \quad \theta_{0} \in W^{7 / 6,6 / 5}(\Gamma)
$$

and Ω is of class $\mathcal{C}^{2,1}$, then the solution \boldsymbol{u} belongs to $\boldsymbol{H}^{2}(\Omega)$.

Very weak solution for $\left(\mathcal{S}_{T}\right)$

Let \boldsymbol{f}, χ, g, and \boldsymbol{h} with

$$
\boldsymbol{f} \in\left(\boldsymbol{T}^{p^{\prime}}(\Omega)\right)^{\prime}, \chi \in L^{p}(\Omega), g \in W^{-1 / p, p}(\Gamma), \boldsymbol{h} \in \boldsymbol{W}^{-1-1 / p, p}(\Gamma)
$$

with $\quad \boldsymbol{T}^{p^{\prime}}(\Omega)=\left\{\boldsymbol{\varphi} \in \boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{div}, \Omega) ; \operatorname{div} \boldsymbol{\varphi} \in W_{0}^{1, p^{\prime}}(\Omega)\right\}$ and satisfying the compatibility conditions:

$$
\begin{align*}
& \forall \boldsymbol{\varphi} \in \boldsymbol{K}_{T}^{p^{\prime}}(\Omega), \quad\langle\boldsymbol{f}, \boldsymbol{\varphi}\rangle_{\left(\boldsymbol{T}^{p^{\prime}}(\Omega)\right)^{\prime} \times \boldsymbol{T}^{p^{\prime}}(\Omega)}+\langle\boldsymbol{h} \times \boldsymbol{n}, \boldsymbol{\varphi}\rangle_{\Gamma}=0 . \tag{6}\\
& \int_{\Omega} \chi \mathrm{d} \boldsymbol{x}=\langle g, 1\rangle_{\Gamma} . \tag{7}
\end{align*}
$$

Then, the Stokes problem $\left(\mathcal{S}_{T}\right)$ has exactly one solution $\boldsymbol{u} \in \boldsymbol{L}^{p}(\Omega)$ and $\pi \in W^{-1, p}(\Omega) / \mathbb{R}$. Moreover, there exists a constant $C>0$ depending only on p and Ω such that:

$$
\begin{align*}
\|\boldsymbol{u}\|_{L^{p}(\Omega)}+\|\pi\|_{W-1, p(\Omega) / \mathbb{R}} & \leq C\left(\|\boldsymbol{f}\|_{\left(\boldsymbol{T}^{p^{\prime}}(\Omega)\right)^{\prime}}+\|\chi\|_{L^{p}(\Omega)}+\|g\|_{W^{-1 / p, p}(\Gamma)}+\right. \\
& \left.+\|\boldsymbol{h} \times \boldsymbol{n}\|_{\boldsymbol{W}^{-1-1 / p, p}(\Gamma)}\right) . \tag{8}
\end{align*}
$$

Helmholtz Decomposition for vector fields in $L^{p}(\Omega)$

For any vector field $\boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega)$, we have the first following decomposition:

$$
\boldsymbol{v}=z+\nabla \chi+\operatorname{curl} \boldsymbol{u}
$$

- $\boldsymbol{z} \in \boldsymbol{K}_{N}^{p}(\Omega)$ is unique,
- $\chi \in W_{0}^{1, p}(\Omega)$ is unique,
- $\boldsymbol{u} \in \boldsymbol{W}^{1, p}(\Omega)$ is the unique solution, up to an additive element of the kernel $\boldsymbol{K}_{T}^{p}(\Omega)$, of the problem :

$$
\begin{cases}-\Delta \boldsymbol{u}=\operatorname{curl} \boldsymbol{v} \quad \text { and } \quad \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega \\ \boldsymbol{u} \cdot \boldsymbol{n}=0, \quad(\operatorname{curl} \boldsymbol{u}-\boldsymbol{v}) \times \boldsymbol{n}=0 & \text { on } \Gamma\end{cases}
$$

Helmholtz Decomposition for vector fields in $L^{p}(\Omega)$

For any vector field $\boldsymbol{v} \in \boldsymbol{L}^{p}(\Omega)$, we have the second following decomposition:

$$
\boldsymbol{v}=z+\nabla \chi+\operatorname{curl} \boldsymbol{u}
$$

- $z \in \boldsymbol{K}_{T}^{p}(\Omega)$ is unique,
- $\chi \in W^{1, p}(\Omega)$ is unique up an additive constant,
- $\boldsymbol{u} \in \boldsymbol{W}^{1, p}(\Omega)$ is the unique solution, up to an additive element of the kernel $\boldsymbol{K}_{N}^{p}(\Omega)$, of the problem :

$$
\begin{cases}-\Delta \boldsymbol{u}=\operatorname{curl} \boldsymbol{v} & \text { and } \quad \operatorname{div} \boldsymbol{u}=0 \\ \boldsymbol{u} \times \boldsymbol{n}=0, & \text { in } \Omega \\ \text { on } \Gamma .\end{cases}
$$

Question:

What happens if the previous compatibility condition is not satisfied?

Variant of the system $\left(\mathcal{S}_{N}\right)$:

Find $(\boldsymbol{u}, \pi, \boldsymbol{c})$ such that:

$$
\left(\mathcal{S}_{N}^{\prime}\right) \begin{cases}-\Delta \boldsymbol{u}+\nabla \pi=\boldsymbol{f} \text { and } \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega \\ \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n} & \text { on } \Gamma, \\ \pi=\pi_{0} \text { on } \Gamma_{0} \quad \text { and } \pi=\pi_{0}+c_{i} & \text { on } \Gamma_{\mathrm{i}}, \quad 1 \leq i \leq I \\ \langle\boldsymbol{u} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leq i \leq I\end{cases}
$$

where $\boldsymbol{c}=\left(c_{i}\right)_{1 \leq i \leq I}$.

Theorem (Weak and Strong solutions for $\left(\mathcal{S}_{N}^{\prime}\right)$)

Let $\boldsymbol{f}, \boldsymbol{g}$ and π_{0} such that:

$$
\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}, \quad \boldsymbol{g} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma), \quad \pi_{0} \in W^{1-1 / p, p}(\Gamma)
$$

Then, the problem $\left(\mathcal{S}_{N}^{\prime}\right)$ has a unique solution $\boldsymbol{u} \in \boldsymbol{W}^{1, p}(\Omega), \pi \in W^{1, p}(\Omega)$ and constants c_{1}, \ldots, c_{I} satisfying the estimate:
$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)}+\|\pi\|_{W^{1, p}(\Omega)} \leq C\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}}+\|\boldsymbol{g}\|_{W^{1-1 / p, p}}+\left\|\pi_{0}\right\|_{W^{1-1 / p, p}}\right)$, and where c_{1}, \ldots, c_{I} are given by

$$
\begin{equation*}
c_{i}=\left\langle f, \nabla q_{i}^{N}\right\rangle_{\Omega}-\left\langle\pi_{0}, \nabla q_{i}^{N} \cdot n\right\rangle_{\Gamma} \tag{9}
\end{equation*}
$$

In particular, if $\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega)$ and $\boldsymbol{g} \in \boldsymbol{W}^{2-1 / p, p}(\Gamma)$, then $\boldsymbol{u} \in \boldsymbol{W}^{2, p}(\Omega)$.

Remark:

- Observe that the following condition

$$
\begin{equation*}
\forall \boldsymbol{v} \in \boldsymbol{K}_{N}^{p^{\prime}}(\Omega), \quad\langle\boldsymbol{f}, \boldsymbol{v}\rangle_{\Omega}-\int_{\Gamma} \pi_{0} \boldsymbol{v} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{\sigma}=0 \tag{10}
\end{equation*}
$$

is equivalent to the relations

$$
c_{i}=0 \quad \text { for all } i=1, \ldots, I .
$$

Then, we have reduced to solve the problem $\left(\mathcal{S}_{N}^{\prime}\right)$ without the constant c_{i} and $\left(\mathcal{S}_{N}^{\prime}\right)$ is anything other then $\left(\mathcal{S}_{N}\right)$.

The assumption on f in the previous theorem can be weakened by considering the space defined for all $1<r, p<\infty$:
$\boldsymbol{H}_{0}^{r, p}(\operatorname{curl}, \Omega)=\left\{\boldsymbol{\varphi} \in \boldsymbol{L}^{r}(\Omega) ; \boldsymbol{\operatorname { c u r l }} \boldsymbol{\varphi} \in \boldsymbol{L}^{p}(\Omega), \boldsymbol{\varphi} \times \boldsymbol{n}=\mathbf{0}\right.$ on $\left.\Gamma\right\}$.
which is a Banach space for the norm

$$
\|\boldsymbol{\varphi}\|_{\boldsymbol{H}_{0}^{r, p}(\operatorname{curl}, \Omega)}=\|\boldsymbol{\varphi}\|_{L^{r}(\Omega)}+\|\operatorname{curl} \boldsymbol{\varphi}\|_{\boldsymbol{L}^{p}(\Omega)}
$$

We can prove that the space $\mathcal{D}(\Omega)$ is dense in $\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)$ and its dual space can be characterized as:

$$
\begin{equation*}
\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}=\left\{\boldsymbol{F}+\operatorname{curl} \boldsymbol{\psi} ; \boldsymbol{F} \in \boldsymbol{L}^{r}(\Omega), \boldsymbol{\psi} \in \boldsymbol{L}^{p}(\Omega)\right\} \tag{11}
\end{equation*}
$$

Theorem (Second Version for Weak solutions for $\left(\mathcal{S}_{N}^{\prime}\right)$)

Let $\boldsymbol{f}, \boldsymbol{g}$ and π_{0} such that
$\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}, \quad \boldsymbol{g} \times \boldsymbol{n} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma), \quad \pi_{0} \in W^{1-1 / r, r}(\Gamma)$,
with $r \leq p$ and $\frac{1}{r} \leq \frac{1}{p}+\frac{1}{3}$. Then, the problem $\left(\mathcal{S}_{N}^{\prime}\right)$ has a unique solution $\boldsymbol{u} \in \boldsymbol{W}^{1, p}(\Omega), \pi \in W^{1, r}(\Omega)$ and constants c_{1}, \ldots, c_{I} satisfying the estimate:

$$
\begin{aligned}
\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)} & +\|\pi\|_{W^{1, r}(\Omega)} \leq C\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}}\right. \\
& \left.+\|\boldsymbol{g} \times \boldsymbol{n}\|_{\boldsymbol{W}^{1-1 / p, p}(\Gamma)}+\left\|\pi_{0}\right\|_{W^{1-1 / r, r}(\Gamma)}\right)
\end{aligned}
$$

and c_{1}, \ldots, c_{I} are given by (9), where we replace the duality brackets on Ω by
$\langle\cdot, \cdot\rangle_{\Omega}=\langle\cdot, \cdot\rangle_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime} \times \boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)}$.

Theorem (Very weak solutions for $\left(\mathcal{S}_{N}\right)$)

Let $\boldsymbol{f}, \boldsymbol{g}$, and π_{0} with

$$
\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}, \boldsymbol{g} \in \boldsymbol{W}^{-1 / p, p}(\Gamma), \pi_{0} \in W^{-1 / p, p}(\Gamma)
$$

and satisfying the compatibility conditions (10). Then, the Stokes problem $\left(\mathcal{S}_{N}\right)$ has exactly one solution $\boldsymbol{u} \in \boldsymbol{L}^{p}(\Omega)$ and $\pi \in L^{p}(\Omega) / \mathbb{R}$. Moreover, there exists a constant $C>0$ depending only on p and Ω such that:

$$
\begin{align*}
\|\boldsymbol{u}\|_{\boldsymbol{L}^{p}(\Omega)}+\|\pi\|_{L^{p}(\Omega) / \mathbb{R}} & \leq C\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{\left.p^{\prime}(\mathbf{c u r l}, \Omega)\right]^{\prime}}\right.}+\|\boldsymbol{g}\|_{\boldsymbol{W}^{-1 / p, p}(\Gamma)}+\right. \\
& \left.+\left\|\pi_{0}\right\|_{\boldsymbol{W}^{-1 / p, p}(\Gamma)}\right) . \tag{12}
\end{align*}
$$

To study the case of Navier boundary conditions:

$$
\boldsymbol{u} \cdot \boldsymbol{n}=0 \quad \text { and } \quad[\mathbf{D}(\boldsymbol{u}) \boldsymbol{n}]_{\boldsymbol{\tau}}=\boldsymbol{h}
$$

it suffices to observe that

$$
[2 \mathbf{D}(\boldsymbol{v}) \boldsymbol{n}]_{\boldsymbol{\tau}}=-\operatorname{curl} \boldsymbol{v} \times \boldsymbol{n}-2 \boldsymbol{\Lambda} \boldsymbol{v} \quad \text { on } \Gamma
$$

where

$$
\boldsymbol{\Lambda} \boldsymbol{w}=\sum_{k=1}^{2}\left(\boldsymbol{w}_{\boldsymbol{\tau}} \cdot \frac{\partial \boldsymbol{n}}{\partial s_{k}}\right) \boldsymbol{\tau}_{k}
$$

VI. Oseen and Navier-Stokes Problem with Pressure Boundary Condition

We are interested to study the following problem:
Find \boldsymbol{u}, q and $\boldsymbol{\alpha} \in \mathbb{R}^{I}$ satisfying:
$(\mathcal{N S}) \quad \begin{cases}-\Delta \boldsymbol{u}+\boldsymbol{u} \cdot \nabla u+\nabla q=\boldsymbol{f} \quad \text { and } \quad \operatorname{div} \boldsymbol{u}=\chi & \text { in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \Gamma, \\ q=q_{0} \text { on } \Gamma_{0} \text { and } q=q_{0}+\alpha_{i} & \text { on } \Gamma_{i}, i=1, \ldots, I, \\ \int_{\Gamma_{i}} \boldsymbol{u} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{\sigma}=0, i=1, \ldots, I, & \end{cases}$

- Note that $\boldsymbol{\alpha}$ is a supplementary unknown Stokes which depends in fact on \boldsymbol{u}
- If we take $\chi=0$ and $g=\mathbf{0}$, unlike the Navier-Stokes problem with Dirichlet boundary conditions de Dirichlet, the property: $\int_{\Omega}(\boldsymbol{u} \cdot \nabla \boldsymbol{u}) \cdot \boldsymbol{u} \mathrm{d} \boldsymbol{x}=0$ does not hold.
- But, we have

$$
\boldsymbol{u} \cdot \nabla \boldsymbol{u}=\operatorname{curl} \boldsymbol{u} \times \boldsymbol{u}+\frac{1}{2} \nabla|\boldsymbol{u}|^{2}
$$

We rewrite then $(\mathcal{N S})$ under the following form:

$$
\left(\mathcal{N S}{ }_{N}\right) \quad \begin{cases}-\Delta \boldsymbol{u}+\operatorname{curl} \boldsymbol{u} \times \boldsymbol{u}+\nabla \pi=\boldsymbol{f} & \text { in } \Omega, \\ \operatorname{div} \boldsymbol{u}=\chi & \text { in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \Gamma, \\ \pi=\pi_{0} \operatorname{sur} \Gamma_{0} \text { et } \pi=\pi_{0}+\alpha_{i} & \text { on } \Gamma_{i}, i=1, \ldots, I, \\ \int_{\Gamma_{i}} \boldsymbol{u} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{\sigma}=0, i=1, \ldots, I, & \end{cases}
$$

Remarks.

- We can search directely weak solutions $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ and $\pi \in L^{2}(\Omega)$ of the system $\left(\mathcal{N S} \mathcal{S}_{N}\right)$ by using a fixed point method.
- We can then obtain solutions $\boldsymbol{u} \in \boldsymbol{W}^{1, p}(\Omega)$ for $p>2$ thanks to the Stokes problem theory.
- The case $p<2$ to study the $\left(\mathcal{N} \mathcal{S}_{N}\right)$ system is more complicated.
- For this reason, we will study the Oseen problem $\left(\mathcal{O} \mathcal{S}_{N}\right)$.

Remarks.

- We can search directely weak solutions $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ and $\pi \in L^{2}(\Omega)$ of the system $\left(\mathcal{N S} \mathcal{S}_{N}\right)$ by using a fixed point method.
- We can then obtain solutions $\boldsymbol{u} \in \boldsymbol{W}^{1, p}(\Omega)$ for $p>2$ thanks to the Stokes problem theory.
- The case $p<2$ to study the $\left(\mathcal{N} \mathcal{S}_{N}\right)$ system is more complicated.
- For this reason, we will study the Oseen problem $\left(\mathcal{O} \mathcal{S}_{N}\right)$.

Study of problem $\left(\mathcal{O} \mathcal{S}_{N}\right)$

$\left(\mathcal{O S} N_{N}\right) \begin{cases}-\Delta \boldsymbol{u}+\operatorname{curl} \boldsymbol{a} \times \boldsymbol{u}+\nabla \pi=\boldsymbol{f} & \text { in } \Omega, \\ \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0} & \text { on } \Gamma, \\ \pi=\pi_{0}+c_{i} & \operatorname{sur} \Gamma_{i}, 0=1, \ldots, I, \\ \int_{\Gamma_{i}} \boldsymbol{u} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{\sigma}=0, i=1, \ldots, I, & \end{cases}$
where we have take $\chi=0$ and $\boldsymbol{g}=\mathbf{0}$. We suppose also that

$$
\operatorname{curl} a \in \boldsymbol{L}^{3 / 2}(\Omega)
$$

We introduce the following Hilbert space:

$$
\begin{gathered}
\boldsymbol{V}_{N}=\left\{\boldsymbol{v} \in H^{1}(\Omega) ; \operatorname{div} \boldsymbol{v}=0 \text { in } \Omega, \boldsymbol{v} \times \boldsymbol{n}=\mathbf{0} \text { on } \Gamma\right. \\
\text { and } \left.\int_{\Gamma_{i}} \boldsymbol{v} \cdot \boldsymbol{n}=0,1 \leq i \leq I\right\}
\end{gathered}
$$

and recall that

$$
\boldsymbol{v} \mapsto\left(\int_{\Omega}|\operatorname{curl} \boldsymbol{v}|^{2}\right)^{1 / 2}
$$

is a norm on \boldsymbol{V}_{N} equivalent to the full norm of $\boldsymbol{H}^{1}(\Omega)$.

Before establishing the result of existence of a weak solution for the problem (13), we will see in what functional space it is reasonable to take π_{0} and to find the pressure π appearing in (13), knowing that we are first interesting to velocity fields in $\boldsymbol{u} \in \boldsymbol{H}^{1}(\Omega)$ with $\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega)$. With a such vector \boldsymbol{u}, we have curl $\boldsymbol{a} \times \boldsymbol{u} \in \boldsymbol{L}^{6 / 5}(\Omega) \hookrightarrow \boldsymbol{H}^{-1}(\Omega)$. Since $\Delta \boldsymbol{u} \in \boldsymbol{H}^{-1}(\Omega)$, we deduce from the first equation in (13) that $\nabla \pi \in \boldsymbol{H}^{-1}(\Omega)$. Then the pressure π belongs to $L^{2}(\Omega)$. Furtheremore,

$$
-\Delta \pi=\operatorname{div} f-\operatorname{div}(\operatorname{curl} \boldsymbol{a} \times \boldsymbol{u}) \quad \text { in } \Omega
$$

so that $\Delta \pi \in \boldsymbol{W}^{-1,6 / 5}(\Omega)$ and the trace of π on Γ belongs to $H^{-1 / 2}(\Gamma)$ so that we must assume that $\pi_{0} \in H^{-1 / 2}(\Gamma)$.

Theorem

Let $\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega), \pi_{0} \in H^{-1 / 2}(\Gamma)$ and $\boldsymbol{a} \in \mathcal{D}^{\prime}(\Omega)$ such that curl $\boldsymbol{a} \in \boldsymbol{L}^{3 / 2}(\Omega)$. Then, the problem:

$$
\begin{equation*}
\text { Find }(u, \pi, c) \in V_{N} \times L^{2}(\Omega) \times \mathbb{R}^{I+1} \text { satisfying (13) with }\langle\pi, 1\rangle_{\Gamma}=0 \tag{14}
\end{equation*}
$$

is equivalent to the problem: Find $\boldsymbol{u} \in \boldsymbol{V}_{N}$ such that

$$
\begin{equation*}
\forall v \in V_{N}, \quad \int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} \mathrm{d} x+\int_{\Omega}(\operatorname{curl} \boldsymbol{a} \times u) \cdot \boldsymbol{v}=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \boldsymbol{x}-\left\langle\pi_{0}, \boldsymbol{v} \cdot \boldsymbol{n}\right\rangle_{\Gamma} \tag{15}
\end{equation*}
$$

and find constants c_{0}, \ldots, c_{I} satisfying $\sum_{i=0}^{I} c_{i} \operatorname{mes} \Gamma_{i}+\left\langle\pi_{0}, 1\right\rangle_{\Gamma}=0$ and such that for any $i=1, \ldots, I$:

$$
\begin{equation*}
c_{i}-c_{0}=\int_{\Omega} \boldsymbol{f} \cdot \nabla q_{i}^{N} \mathrm{~d} \boldsymbol{x}-\int_{\Omega}(\operatorname{curl} \boldsymbol{a} \times \boldsymbol{u}) \cdot \nabla q_{i}^{N} \mathrm{~d} \boldsymbol{x}-\left\langle\pi_{0}, \nabla q_{i}^{N} \cdot \boldsymbol{n}\right\rangle_{\Gamma} \tag{16}
\end{equation*}
$$

Using the Lax Milgram theorem and some regularity result of the Laplacian, we prove the following theorem.

Theorem

Let $\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega)$, $\boldsymbol{\operatorname { c u r l }} \boldsymbol{a} \in \boldsymbol{L}^{3 / 2}(\Omega)$ and $\pi_{0} \in H^{-1 / 2}(\Gamma)$, then the problem (13) has a unique solution
$(\boldsymbol{u}, \pi, \boldsymbol{c}) \in \boldsymbol{H}^{1}(\Omega) \times L^{2}(\Omega) \times \mathbb{R}^{I+1}$ with $\langle\pi, 1\rangle_{\Gamma}=0$ and we have the following estimates:

$$
\begin{gather*}
\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C\left(\|f\|_{L^{6 / 5}(\Omega)}+\left\|\pi_{0}\right\|_{H^{-1 / 2}(\Gamma)}\right) \tag{17}\\
\|\pi\|_{L^{2}(\Omega)} \leq C\left(1+\|\operatorname{curl} a\|_{L^{3 / 2}(\Omega)}\right)\left(\|f\|_{L^{6 / 5}(\Omega)}+\left\|\pi_{0}\right\|_{H^{-1 / 2}(\Gamma)}\right) \tag{18}
\end{gather*}
$$

where $\boldsymbol{c}=\left(c_{0}, \ldots, c_{I}\right)$. Moreover, if $\pi_{0} \in W^{1 / 6,6 / 5}(\Gamma)$ and Ω is $\mathcal{C}^{2,1}$, then $\boldsymbol{u} \in \boldsymbol{W}^{2,6 / 5}(\Omega)$ and $\pi \in W^{1,6 / 5}(\Omega)$.

Remarque

Even if the pressure π change in $\pi-c_{0}$, the system (13) is equivalent to the following type-Oseen problem:

$$
\left(\mathcal{O S}_{N}\right) \quad \begin{cases}-\Delta \boldsymbol{u}+\mathbf{c u r l} \boldsymbol{a} \times \boldsymbol{u}+\nabla \pi=\boldsymbol{f} \quad \text { and } \quad \operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega, \\ \boldsymbol{u} \times n=\mathbf{0} & \text { on } \Gamma, \\ \pi=\pi_{0} \quad \text { on } \Gamma_{0}, \quad \text { and } \pi=\pi_{0}+\alpha_{i}, i=1, \ldots, I, & \text { on } \Gamma_{i}, \\ \int_{\Gamma_{i}} u \cdot n \mathrm{~d} \sigma=0, \quad i=1, \ldots, I, & \end{cases}
$$

where the unknowns constants satisfy for any $i=1, \ldots, I$:

$$
\alpha_{i}=\int_{\Omega} \boldsymbol{f} \cdot \nabla q_{i}^{N} \mathrm{~d} \boldsymbol{x}-\int_{\Omega}(\boldsymbol{\operatorname { c u r l }} \boldsymbol{a} \times \boldsymbol{u}) \cdot \nabla q_{i}^{N} \mathrm{~d} \boldsymbol{x}-\left\langle\pi_{0}, \nabla q_{i}^{N} \cdot \boldsymbol{n}\right\rangle_{\Gamma} .
$$

But, it is clear that the new pressure π does not satisfy the condition $\langle\pi, 1\rangle_{\Gamma}=0$.

Remarque

If we suppose that $\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{6,2}(\operatorname{curl}, \Omega)\right]^{\prime}$, $\boldsymbol{\operatorname { c u r l }} \boldsymbol{a} \in \boldsymbol{L}^{3 / 2}(\Omega)$ and $\pi_{0} \in H^{-1 / 2}(\Gamma)$, then the problems (14) and (15)-(16) are again equivalent, with the difference that we use here the duality brackets between $\left[\boldsymbol{H}_{0}^{6,2}(\operatorname{curl}, \Omega)\right]^{\prime}$ and $\boldsymbol{H}_{0}^{6,2}(\operatorname{curl}, \Omega)$ in place of the integral on Ω in the right hand side of (15) and the density of $\mathcal{D}_{\sigma}(\bar{\Omega}) \times \mathcal{D}(\bar{\Omega})$ in the space
$\mathcal{M}=\left\{(\boldsymbol{u}, \pi) \in \boldsymbol{H}_{\sigma}^{1}(\Omega) \times L^{2}(\Omega) ;-\Delta \boldsymbol{u}+\nabla \pi \in\left[\boldsymbol{H}_{0}^{6,2}(\mathbf{c u r l}, \Omega)\right]^{\prime}\right\}$
It is easy now to extend Theorem 2 to the case where $\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{6,2}(\mathbf{c u r l}, \Omega)\right]^{\prime}$, the divergence operator does not vanish and the case of nonhomogeneous boundary conditions.

Theorem

Let $\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{6,2}(\operatorname{curl}, \Omega)\right]^{\prime}, \operatorname{curl} \boldsymbol{a} \in \boldsymbol{L}^{3 / 2}(\Omega), \chi \in W^{1,6 / 5}(\Omega), \pi_{0} \in H^{-1 / 2}(\Gamma)$ and $g \in H^{1 / 2}(\Gamma)$. Then the problem

$$
\begin{cases}-\Delta \boldsymbol{u}+\operatorname{curl} \boldsymbol{a} \times \boldsymbol{u}+\nabla \pi=\boldsymbol{f} \quad \text { and } \quad \operatorname{div} \boldsymbol{u}=\chi & \text { in } \Omega, \tag{19}\\ \boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} \times \boldsymbol{n} & \text { on } \Gamma, \\ \pi=\pi_{0} \text { on } \Gamma_{0}, \quad \text { and } \pi=\pi_{0}+\alpha_{i}, i=1, \ldots, I & \text { on } \Gamma_{i}, \\ \int_{\Gamma_{i}} u \cdot n \mathrm{~d} \boldsymbol{\sigma}=0, \quad i=1, \ldots, I, & \end{cases}
$$

has a unique solution $(\boldsymbol{u}, \pi, \boldsymbol{\alpha}) \in \boldsymbol{H}^{1}(\Omega) \times L^{2}(\Omega) \times \mathbb{R}^{I}$ verifying the estimate:

$$
\begin{aligned}
\|u\|_{H^{1}(\Omega)} \leq & C\left(\|f\|_{\left[H_{0}^{6,2}(\operatorname{curl}, \Omega)\right]^{\prime}}+\left\|\pi_{0}\right\|_{H^{-1 / 2}(\Gamma)}+\left(1+\|\operatorname{curl} a\|_{L^{3 / 2}(\Omega)}\right) \times\right. \\
& \left.\times\left(\|\chi\|_{W^{1,6 / 5}(\Omega)}+\|g\|_{H^{1 / 2}(\Gamma)}\right)\right) \\
\|\pi\|_{L^{2}(\Omega)} \leq & C\left(1+\|\operatorname{curl} \boldsymbol{a}\|_{L^{3 / 2}(\Omega)}\right)\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{6,2}(\operatorname{curl}, \Omega)\right]^{1^{1}}}+\left\|\pi_{0}\right\|_{H^{-1 / 2}(\Gamma)}+\right. \\
& \left.\quad+\left(1+\|\operatorname{curl} a\|_{L^{3 / 2}(\Omega)}\right) \times\left(\|\chi\|_{W^{1,6 / 5}(\Omega)}+\|\boldsymbol{g}\|_{\boldsymbol{H}^{1 / 2}(\Gamma)}\right)\right)
\end{aligned}
$$

where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{I}\right)$. Moreover, if $\boldsymbol{f} \in \boldsymbol{L}^{6 / 5}(\Omega), \pi_{0} \in W^{1 / 6,6 / 5}(\Gamma)$, $g \in W^{7 / 6,6 / 5}(\Gamma)$ and Ω is $\mathcal{C}^{2,1}$, then $\boldsymbol{u} \in W^{2,6 / 5}(\Omega)$ and $\pi \in W^{1,6 / 5}(\Omega)$.

- Strong Solutions when $p \geq 6 / 5$.

In the rest of this talk, we suppose that Ω is $\mathcal{C}^{2,1}$ and we are interested in the study of strong solutions for the system $\left(\mathcal{O} \mathcal{S}_{N}\right)$.
When $p<\frac{3}{2}$, because the embedding
$W^{2, p}(\Omega) \hookrightarrow W^{1, p *}(\Omega)$, the term curl $\boldsymbol{a} \times \boldsymbol{u} \in L^{p}(\Omega)$ and we can use the regularity results on the Stokes problem. But this is not more the case when $p \geq \frac{3}{2}$ and that curl a belongs only to $L^{3 / 2}(\Omega)$.
We give in the following theorem the good conditions to ensure the existence of strong solutions.

Theorem

Let $p \geq 6 / 5$,

$$
\boldsymbol{f} \in \boldsymbol{L}^{p}(\Omega), \quad \pi_{0} \in W^{1-1 / p, p}(\Gamma), \quad \operatorname{curl} \boldsymbol{a} \in \boldsymbol{L}^{s}(\Omega)
$$

with

$$
\begin{equation*}
s=\frac{3}{2} \text { if } p<\frac{3}{2}, \quad s=p \text { if } p>\frac{3}{2}, \quad s=\frac{3}{2}+\varepsilon \text { if } p=\frac{3}{2}, \tag{20}
\end{equation*}
$$

for $\varepsilon>0$ arbitrary. Then the solution (u, π) given by the previous theorem belongs to $W^{2, p}(\Omega) \times W^{1, p}(\Omega)$ and satisfies the estimate:
$\|\boldsymbol{u}\|_{W^{2, p}(\Omega)}+\|\pi\|_{W^{1, p}(\Omega)} \leq C\left(1+\|\operatorname{curl} \boldsymbol{a}\|_{L^{s}(\Omega)}\right)\left(\|f\|_{L^{p}(\Omega)}+\left\|\pi_{0}\right\|_{W^{1-1 / p, p}(\Gamma)}\right)$.

- Generalized Solutions with $(p>2)$:

Theorem

Let $p>2$. Let $\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}, \chi \in W^{1, r}(\Omega)$ and $\boldsymbol{g} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma)$. We suppose that $\pi_{0} \in W^{1-1 / r, r}(\Gamma)$ and $\operatorname{curl} \boldsymbol{a} \in \boldsymbol{L}^{s}(\Omega)$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{3}$ and s satisfies:
$s=\frac{3}{2}$ if $2<p<3, \quad s=\frac{3}{2}+\varepsilon$ if $p=3$ and $s=r$ if $p>3$,
for some arbitrary $\varepsilon>0$. Then the problem (19) has a unique solution $(\boldsymbol{u}, \pi, \boldsymbol{\alpha}) \in \boldsymbol{W}^{1, p}(\Omega) \times W^{1, r}(\Omega) \times \mathbb{R}^{I}$ satisfying the estimate

$$
\begin{align*}
\|\boldsymbol{u}\|_{W^{1, p}(\Omega)} & +\|\pi\|_{W^{1, r}(\Omega)} \leq C\left(1+\|\operatorname{curl} a\|_{L^{s}(\Omega)}\right)^{2}\left(\|f\|_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}}+\right. \\
& \left.+\|\boldsymbol{g}\|_{W^{1-1 / p, p}(\Gamma)}+\left\|\pi_{0}\right\|_{W^{1-1 / r, r}(\Gamma)}+\|\chi\|_{W^{1, r}(\Omega)}\right) \tag{21}
\end{align*}
$$

where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{I}\right)$.

- Generalized Solutions $(p<2)$:

Using a duality argument, we obtain the following result :

Theorem

We suppose that $p<2$. Soit $\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}, \operatorname{curl} \boldsymbol{a} \in \boldsymbol{L}^{s}(\Omega)$ and $\pi_{0} \in W^{1-1 / r, r}(\Gamma)$ with

$$
\begin{equation*}
r=1+\epsilon^{\prime} \text { if } p<\frac{3}{2}, r=\frac{9+6 \epsilon}{9+2 \epsilon} \text { if } p=\frac{3}{2} \text { and } r=\frac{3 p}{3+p} \text { if } \frac{3}{2}<p<2 \tag{22}
\end{equation*}
$$

$s=\left(1+\epsilon^{\prime}\right) \frac{3 p}{4 p-3-\epsilon^{\prime}(3-p)}$ if $p<\frac{3}{2}, s=\frac{3}{2}+\epsilon$ if $p=\frac{3}{2}$ and $s=\frac{3}{2}$ if $\frac{3}{2}<p<2$,
where $\epsilon, \epsilon^{\prime}>0$ are arbitrary. Problem $\left(\mathcal{O} \mathcal{S}_{N}\right)$ has a unique solution $(\boldsymbol{u}, \pi, \boldsymbol{\alpha}) \in \boldsymbol{W}^{1, p}(\Omega) \times W^{1, r}(\Omega) \times \mathbb{R}^{I}$ satisfying the estimate:

$$
\begin{aligned}
& \|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)} \leq C\left(1+\|\operatorname{curl} \boldsymbol{a}\|_{L^{s}(\Omega)}\right)^{2}\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime}}+\left\|\pi_{0}\right\|_{W^{1-1 / r, r}(\Omega)}\right), \\
& \|\pi\|_{W^{1, r}(\Omega)} \leq C\left(1+\|\operatorname{curl} \boldsymbol{a}\|_{L^{s}(\Omega)}\right)^{3}\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\operatorname{curl}, \Omega)\right]^{\prime^{\prime}}}+\left\|\pi_{0}\right\|_{W^{1-1 / r, r}(\Omega)}\right)
\end{aligned}
$$

The Navier-Stokes problem $\left(\mathcal{N} \mathcal{S}_{N}\right)$

$$
\left(\mathcal { N \mathcal { S } _ { N }) } \left\{\begin{array}{ll}
-\Delta \boldsymbol{u}+\operatorname{curl} \boldsymbol{u} \times \boldsymbol{u}+\nabla \pi=\boldsymbol{f} & \text { in } \Omega \\
\operatorname{div} \boldsymbol{u}=\chi & \text { in } \Omega, \\
\boldsymbol{u} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \Gamma \\
\pi=\pi_{0} \text { on } \Gamma_{i} \text { and } \pi=\pi_{0}+c_{i} & \text { on } \Gamma_{i}, \\
\int_{\Gamma_{i}} \boldsymbol{u} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{\sigma}=0, i=1, \ldots, I, &
\end{array}\right.\right.
$$

In the search of a proof of the existence of generalized solution for the Navier-Stokes equations $\left(\mathcal{N S}{ }_{N}\right)$, we consider the case of small enough data.

Theorem

Let $\boldsymbol{f} \in\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}, \chi \in W^{1, r}(\Omega), \boldsymbol{g} \in \boldsymbol{W}^{1-1 / p, p}(\Gamma), \pi_{0} \in W^{1-1 / r, r}(\Gamma)$ with $\frac{3}{2}<p$ and $r=\frac{3 p}{3+p}$.
i) There exists a constant $\alpha_{1}>0$ such that, if

$$
\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}}+\|\chi\|_{W^{1, r}(\Omega)}+\|\boldsymbol{g}\|_{W^{1-1 / p, p}(\Gamma)}+\left\|\pi_{0}\right\|_{W^{1-1 / r, r}(\Gamma)} \leq \alpha_{1}
$$

then, there exists a solution $(\boldsymbol{u}, \pi, \boldsymbol{c}) \in \boldsymbol{W}^{1, p}(\Omega) \times W^{1, r}(\Omega) \times \mathbb{R}^{I}$ to problem $\left(\mathcal{N S}{ }_{N}\right)$ verifying the estimate
$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1, p}(\Omega)} \leq C\left(\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}}+\|\chi\|_{W^{1, r}(\Omega)}+\|\boldsymbol{g}\|_{W^{1-1 / p, p}(\Gamma)}+\left\|\pi_{0}\right\|_{W^{1-1 / r, r}(\Gamma)}\right)$,
with $c_{i}=\left\langle\boldsymbol{f}, \nabla q_{i}\right\rangle_{\Omega_{r^{\prime}, p^{\prime}}}+\int_{\Gamma}\left(\chi-\pi_{0}\right) \nabla q_{i}^{N} \cdot \boldsymbol{n}-\int_{\Omega}(\operatorname{curl} \boldsymbol{u} \times \boldsymbol{u}) \cdot \nabla q_{i}^{N}$.
ii) Moreover, there exists a constant $\left.\left.\alpha_{2} \in\right] 0, \alpha_{1}\right]$ such that this solution is unique, if

$$
\|\boldsymbol{f}\|_{\left[\boldsymbol{H}_{0}^{r^{\prime}, p^{\prime}}(\mathbf{c u r l}, \Omega)\right]^{\prime}}+\|\chi\|_{W^{1, r}(\Omega)}+\|\boldsymbol{g}\|_{W^{1-1 / p, p}(\Gamma)}+\left\|\pi_{0}\right\|_{W^{1-1 / r, r}(\Gamma)} \leq \alpha_{2}
$$

For Further Reading

C. Amrouche, A. Rejaiba, L^{p}-Theory for Stokes and Navier-Stokes Equations with Navier Boundary Condition, Journal Diff. Equat., 256 (2014) 1515-1547.
C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Applied Sc., Vol. 21, (1998), 823-864.

C. Amrouche, M. Ángeles Rodríguez-Bellido Stationary Stokes, Oseen and Navier-Stokes Equations with Singular Data, Arch. Rational. Mech. Anal., 199 (2011), 597-651.
C. Amrouche, N. Seloula, L^{p}-theory for vector potentials and Sobolev's inequqlities for vector fields. Application to the Stokes problem's with pressure boundary conditions, M3AS, Volume 23-1, (2013), 37-92.
.
C. Amrouche, N. Seloula, On the Stokes equations with the Navier-type boundary conditions, Differential Equations and Applications, Volume 3, Number 4, (2011), 581-607.

