Lecture IV

Stationary Stokes and Navier-Stokes Equations

with Different Physical Boundary Conditions



Outline

I. Stokes Equations with Normal Boundary Conditions

I1. Stokes Equations with Pressure and Tangential Boundary
Conditions

III. Oseen and Navier-Stokes Equations with Pressure and
Tangential Boundary Conditions



Introduction and motivation

We are interested by the following Stokes equations:

—Au+Vr=Ff in Q,
divu =0 in Q,

with the following nonhomogeneous boundary conditions:

uxXxn=gxn and ™ =7y on T, (1)
or
u-n=g and curlu xn=h xn on I, (2)
or the following Navier boundary condition
u-n=g and 2[D(u)n]_ +au,=h, (3)
I



We will study also here the case of the Navier-Stokes equations:

Find wu, m, , with a;, € R

—Au+u-Vu+Vr=Ff and V-u=0 in
UXN=gXn on I’

m=m9 on I'gand 7 = 7y + only, i=1,...,1,



where we suppose that €2 is an open set possibly multiply

connected sufficiently regular with a boundary I' possibly non
I

connected. We denote I' = |J I'; with T'; the connected
i=0
g
components of I" and ¥ = |J ¥; and X; a finite number of cuts.
j=1

J
Q° =Q\ | %, is simply connected.

7j=1




Considering for example the case of the Stokes equations with the homogeneous
boundary conditions

(SO) —Au+Vr=f and divu=0 in{,
T u-n=0, and curluxn=0 onT.

Because these boundary conditions, we write

—Awu = curlcurlu — Vdivu
For the variational formulation, we will consider the following spaces:
V ={v € L*(Q), curlv € L?(Q), divv =0, v-n=0 on T},

We will prove later that the Stokes problem (S%), with f € L%/5 (), u € V and
m € L2(Q), is equivalent to

Find u € V such that
VveV, [qeurlu-curlvde = [,f - vde.



Questions:

e Because u is apparently only in H }(Q), how to give a
sense to the following boundary condition

curlu xn=0 onI?

@ The bilinear form is it coercive to apply the Lax-Milgram
lemma, 7

We know (see Lecture I) that if 2 is simply connected, we
have:
Vv eV, [[vlgig < Clleurlv| g
o What happens if €2 is not simply connected 7
e Can we find generalized solution in W P(Q) with
l<p<oo?
e Can we find strong solution in W 2P(Q) with 1 < p < oo ?
e Can we find very weak solution in LP(Q2) with 1 <p < oo ?



II. Stokes problems with normal boundary
conditions

Consider the following Stokes problem:

—Au+Vr=f in Q,

divu =0 in Q,
(ST)

u-n=g, curluxn=hxn onl,

(u-m, 1), =0, 1<j<J.



II. Stokes problems with normal boundary
conditions

Consider the following Stokes problem:

—Au+Vr=f in Q,

divu =0 in Q,
(ST)

u-n=g, curluxn=hxn onl,

(u-m, 1), =0, 1<j<J.

Suppose that 1p € W1P(Q). Then

curly - n =divp(¢p X n) in W_l/PvP(F).

Proof. To simplify, suppose p = 2. For any x € H?(Q), Green formulas yield

/curlwvgradx = (curly-n, x)p,
Q

/curl'z,b~gradx = — (¥ xmn,gradx)p
Q

= (dive( x n), Xr-



Applying the divergence operator in Problem (S7), we get
firstly
An=divf in Q.

Setting then 9 = curl u, we have
—Awu =curly inQ
and
—Au-n=curlyy - n=(f —Vnr)- n.

So formally the pressure satisfies the following Neumann
boundary condition:

or

an:f-n—divr(hxn) onT

So, we can solve the pressure directly in the Stokes problem

(Sr).



Let us introduce the following space:

H;?(div, Q) ={p € L"(Q); divp € LP(Q), ¢-n=0onT},
which is a Banach space for the norm
el zr v (aiv, ) = llellzr @) + |div el ).
We can prove that
D(Q) isdensein H[P(div, Q).
So its dual is then a subspace of D’(Q2) which can be
characterized as:

[Hy?(div, Q) = {F +grady; Fe L (Q), v e LV (Q)}.



Lemma 2.2

Suppose that
z € [HY*(div, Q)

that means that
z=Vr—f, with 7eL*Q) andf e L5/°(Q)
and assume div z = 0 in 2. Then
z-ne H3?)
and for any x € H?(2) such that g—i‘t = 0, we have

(2. VX) 82 aiv, ) x B 2(aiv,0) = (Z - T XD m=s/2(m)xao/2(r)

4




Proposition 2.3

For any
feL5Q), heH YT

there exists m € L?(£2), unique up an additive constant, such
that

Arm=divf in Q, g:;—f-n—din(hxn) on' (4)

4

Proof.
Problem (4) is equivalent to the following very weak
formulation: for any xy € H?(2) such that g% =0

/QWAX = - /Qf - Vx + (dive(h X 1), X) g-3/2(0) < g3/2(r)

that we solve by duality thanks to the H?2-regularity for the
strong Neumann problem with the RHS in L?(2).



e To solve the Stokes problem (S7), without loss generality,
we suppose that g = 0.

@ We consider here only the hilbertian case: we search the
velocity in H'(Q2) and the pressure in L?(2). For that, we
will suppose that

feL(Q), heH VD).

o We solve first the following Neumann problem:

There exists a very weak solution 7 € L*(Q2), unique up an
additive constant, satisfying:

Ar=divf inQ, (Vr—f)-n=—divp(hxn) onTl



Remark

@ Unlike the case of the Stokes problem with Dirichlet
boundary condition, it appears that when

divf=0 inQ and f-n—divp(hxn)=0 onT

the pressure m can be constant.



Setting
H = H>?*(div, Q)

and let us consider the following space
EAQ) ={vecHYQ), Avec H'Y},
which is a Banach space for the graph norm.

We have the following preliminary results:

D(Q) is dense in E(A,Q).



As a consequence, we have the following result.

Proposition 2.4

The linear mapping v : v — curlv|r x n defined on D(2) can
be extended to a linear continuous mapping

v E(A,Q) — H2(T).

Moreover, we have the Green formula: for any v € E(A,2) and
p € HL(Q) with dive = 0in Q,

—(Av, ©)givH —/ curlv-curlpdz —(curlv xn, p)r, (5)
Q

where the duality on I' is defined by (-, )y = (-, '>H*%(F)xH%(F)'

V.




Proposition 2.5 (Weak and Strong solutions of (S7))
i) Let g =0,

feILfQ), hxneH YD),

satisfying the following compatibility condition:
Vo e K4(Q), /f-vdm—i—(hxn, 'U>H_1/2(1—\)>< H2(T) = 0.
Q

Then, the problem (S7) has a unique solution
(u,7) € H1(Q) x L?(Q)/R satisying the estimate:

Il @)+ Imlliz@)m < Ul ors @) + 1A X 1l =172 (1))

ii) If moreover  is of class C*' and h x n € W1/65/5(1),
then the solution (u, ) belongs to W 25/5(Q) x W 16/5(().
If f € L*(Q) and h x n € HY?(T), then the solution (u, )
belongs to H 2(Q) x H(Q).
I a4




Proof.

o Observe first that if u € H *(Q) is solution of Problem S,
then Au € H' and then

curlu x n € H™V/2(I).

So the boundary condition of the tangential component of
the vorticity of u has a sense.



To prove the existence of weak solution, we will use
Lax-Milgram Lemma.

It is easy to see that if w € V is solution of Problem (S7), then
(P%) Yoe Vv, / curlu-curlvde = / frvde+ (hxmn, v>H*1/2(F)>< H1/2(T)"
Q Q

where we recall that

V = {v € L*(Q), curlv € L*(Q), dive =0, v-n = 0 and (v-n, s, =0, 1<j<J}

and
V — HY(Q) — L°Q).

(observe the compatibility condition)



o In fact, Problem (73%) is equivalent to the problem: Find
u € V such that

(Q%) Ywe W, /curlu-curlwdw:/f-v dz+(hxn, v)r
Q Q

where

W = {wc L*(Q), divv =0, curlw € L*(Q), w-n =0}.



e Taking w € D(R?), with div w = 0, then by de Rham’s
Theorem we deduce that there exits 7 € L?(2) such that

—Au+Vr=Ff in Q.

o Next multiplying this equation by w € W and using
Green-Formula, we deduce that

Vwe W, (curlu x n, w)r = (h X n, w)r.
Now, for any u € H'/?(T'), there exists
weW withw=p, onl.
Consequently

(curlu x n, p)pr = (h x n, pu)r.



ITI. Stokes Equations with Pressure Boundary
Condition

Here, we decompose the Stokes problem in two problems

—Au=f in Q,
divu =0 in Q
SO ’
(Sw) uXxmn=0, on I,
(u-m, )y, =0, 1<i<I
and
—-Aw+VO=0 in Q,
divw =0 in Q,
(Sx) _ _
wXn=gxmn, 0 = 06p on I,
(w-n, )r, =0, 1<i<1I

@ The pressure can be found independently of the velocity as a solution of the
Dirichlet problem:
AO=01in Q, 6=6y onT



@ We set G = —V0. Then, u and w are solutions respectively of

—Au=Ff in Q,
divu =0 in Q
&2 '
(x) uXxn=0, on I,

(w-m, hr, =0, 1<i<I.

and
—Aw=G in
divw =0 in €,
(EN) _
wXn=gxmn, on I,

(w-n, ), =0, 1<i<I.

@ We are reduced to solve Problem (£$) and Problem (£X).



Study of the elliptic problem

—Au=f
divu =0
uxn=20,

(u-m, I)p, =0, 1<i<I.

k3

in €,
in €,

on I,



Remarks:
o The condition div f = 0 in €2 is necessary to solve (E%).

@ The condition divu =0 in ) <= divu =0 on I' on the
one hand. On the other hand, since

du
divu:divFuT—i—Ku-n—i-a—'n sur I,
n
where K denotes the mean curvature of I', the condition
divu = 0 on I is itself equivalent, if u x n =0 on I, to the
Fourier-Robin condition:

0
Ku-n—l——u-n:() on I'.
on

That means that the problem (EY) is equivalent to the
following:

—Au=Ff in ,

uxn=20 on I’

0
Ku-n—l——u-n:O on I
on



Proposition 3.1 (Weak and Strong solutions of (E9;))

i) Let f € LY ®(Q) satisfying the following compatibility
conditions:

divf =0 inQ andVvc K#(Q), /f vdx = 0.

Then, the problem (E%) has a unique solution v € H *(Q)
satisying the estimate:

[ w ”Hl(Q) <C|f ||L6/5(Q)

ii) If moreover €2 is of class C>!, then the solution u belongs
to W 25/5(Q).




Proof. We use here only Method 1 of vector potential.

o We have f € L%°(Q) and

divf=0 inQ, (f n, Ly =0 0<i<I,

o We know that if Q is of class Cb!, there exists a unique
vector potential ¢ € W 16/°(Q) — L2(Q) such that

f=curly and divy =0in Q,
¢n:0 OHF,
Wom, =0, 1< <

with the estimate

||¢||W1»6/5(Q) < CHf HL6/5(Q)'



o Now because 1 € L?(), with
divy) =0inQ, ¥ -n=0,(-n, ,1)2j =0, 1<j<J.
there exists a unique vector potential u € H '(Q) such that

¥ =curlu and divu =0 in Q,
uxn=>0 on I,
(u-n, 1)p, =0, 1<i<I.

with the estimate
lull a0 < Clltll2y < CIIF llgsss(ey-

e Moreover if 2 is of class C>', then u € W 25/5(Q).



Study of the elliptic problem

“-Aw=G in Q,
divw =0 in Q,
(&x) _
wXnN=gXxmn, on I
(w-n, )p, =0, 1<i<].
where
G =-Vo,
and where 6 € W1/6:6/5(Q) is solution of the following Dirichlet
problem:

AO=0in Q, 6=06y onI.
with 6 € W16/5(T)



Proposition 3.2 (Weak and Strong solutions of (E';))

1) Let
gxneHY*T) and 6 € W/65/5(T)

satisfying the following compatibility condition:

Vo € K2(Q), /Oov-nzo.
r

Then, the problem (ElN) has a unique solution u € H ' (Q) satisying the
estimate:

Itz < C(Ig % mllgze + 1160 lwi/sss)-

gxneHY*T) and 6y € W7/65/5(I)

and  is of class %!, then the solution u belongs to H 2(f).




Very weak solution for (St)

Let f, x, g, and h with
fe (TPI(Q))', x € LP(Q), g € W_l/"”p(l")7 h e W_l_l/p’p(l"),

with TP (Q) = {¢ e HY (div, Q); dive € W7 (Q)} and satisfying the
compatibility conditions:

Ve e K% (Q)v <.f7 ‘P>(Tp’(Q))/XTp/<Q) + <h X n, ‘P)F = 0. (6)
[ xdz= (g, 1r. ™
Q

Then, the Stokes problem (S ) has exactly one solution u € LP(Q2) and
m € W —1P(Q)/R. Moreover, there exists a constant C' > 0 depending only on p
and  such that:

lullzo@ + Il 1oy < C(LF Nl izw iy Hixlzo gl —1/p0 @y +

+ [k x "walfl/p,p(r))- (8)

<



Helmholtz Decomposition for vector fields in L”({2)

For any vector field v € LP(2), we have the first following

decomposition:
v=2z+Vyx+curlu,

o z € KX (Q) is unique,

o y € W,'P(Q) is unique,

o u € W'P(Q) is the unique solution, up to an additive
element of the kernel K 2(Q), of the problem :

{—Au:curlv and dive =0 in

u-n=0, (curlu—v)xn=0 onl.



Helmholtz Decomposition for vector fields in L”({2)

For any vector field v € LP(Q), we have the second following

decomposition:
v=2z+4+Vyx+curlu,

o z € K£(Q) is unique,
e \ € WP(Q) is unique up an additive constant,

o u € W'P(Q) is the unique solution, up to an additive
element of the kernel K X (€2), of the problem :

{—Au:curlv and dive =0 in Q,

u xn =0, on I'.



Question:

What happens if the previous compatibility condition is not
satisfied?

Variant of the system (Sy) :

Find (u, 7, ¢) such that:

—Au+Vr=Ff and divu=0 in{,

, UXN=¢gXn onl,

(Sn) 4
m=mg onl'g and w=mng+¢ onlj, 1<i<]T
(u-n, L)r, =0, 1<i<I,

where ¢ = (¢;)1<i<1-



Theorem (Weak and Strong solutions for (Sy))

Let f, g and 7 such that:
fe[HY (curl, Q), ge WIYPE(I), 1€ Wi-Y/Pe(D),

Then, the problem (S}) has a unique solution u € W 1P(Q), # € W 1'P(Q) and
constants ci, ..., cy satisfying the estimate:

‘u”Wl,p(Q)‘f’”ﬂ”W 1,7(Q) < C(”‘f”[HO"”(curl, Q)],"‘”g”W171/117710""||7T0||W 171/10,10)7

and where cy,...,cy are given by

e = (f, V) — (ro, Val - m)r. ®)

In particular, if f € LP(Q2) and g € W 2=1/P2(T), then u € W 27(1Q).




Remark :

@ Observe that the following condition
’
Vv € KX (Q), <f,1)>Q*/7T0’U-TLdO'=0, (10)
r
is equivalent to the relations

c;=0 foralli=1,...,1I.

Then, we have reduced to solve the problem (S’y;) without the constant c;
and (8’y) is anything other then (S ).



The assumption on f in the previous theorem can be weakened
by considering the space defined for all 1 < r, p < oc:

H;%(curl, Q) = {p € L"(Q); curly € LP(Q), pxn =0onT}.
which is a Banach space for the norm

el zr?(curt, o) = [lellzr@) + [[curl @l zr(q).
We can prove that the space D(2) is dense in Hg,’pl(curl7 Q)

and its dual space can be characterized as:

[H!"" (curl, Q)" = {F + curly; F e L'(Q), ¥ € L’(Q)}.
(11)



Theorem (Second Version for Weak solutions for (S}))
Let f, g and 7y such that

fe [Hg/’p/(curl, Q), gxne Wlfl/p’p(f‘), my € Wl*l/m(r)a

with r <p and 1 < ;1) + %. Then, the problem (S}) has a
unique solution u € W1P(Q), 7 € W17 (Q) and constants
c1, .. .,cr satisfying the estimate:

||u||W1’p(Q) + ||7THW1’T(Q) < C(Hf ||[Hgl’p/(curl,ﬂ)]’

T+ llg x ol avmagey + ITolli 1-mrry);

and c1,...,cr are given by (9), where we replace the duality
brackets on 2 by

{e=( >[Hg/’pl(cur1, Q) xHI'7 (curl, Q)"




Theorem (Very weak solutions for (Sy))
Let f, g, and my with

feHY (curl, ), g e WPr(T), mg e W rr(D),

and satisfying the compatibility conditions (10). Then, the
Stokes problem (S ) has exactly one solution w € L?(€2) and
m € LP(Q)/R. Moreover, there exists a constant C' > 0
depending only on p and €2 such that:

lullzr@) + Imlzs@ym < C(1F Ny ourt g H19 w1y +

+ HWOHW*l/PvP(F))- (12)




To study the case of Navier boundary conditions:

u-n=0 and [D(u)n]_=h,

T

it suffices to observe that
2D(v)n|, = —curlv x n —2Av onT,

where

2
on
Aw = Z ('w,. . 87516)7%
k=1



VI. Oseen and Navier-Stokes Problem with Pressure
Boundary Condition

We are interested to study the following problem:
Find u, ¢ and a € RY satisfying:

—Aut+u-Vu+Vg=f and divu=x inQ,
uxXn=g on I

NS
( ) q=qo onI'gand ¢ =qo + «; only, i=1,...,1,

friu-nda:O, i=1,...,1,

@ Note that « is a supplementary unknown Stokes which depends in fact on u

@ If we take x = 0 and g = 0, unlike the Navier-Stokes problem with Dirichlet
boundary conditions de Dirichlet, the property: fﬂ(u -Vu)-udz =0 does
not hold.

@ But, we have
1
u- Vu:curluxu+§V|u\2



We rewrite then (N'S) under the following form:

—Au+curlu xu+Vr=f in

divu =y in Q,
(NS nN) uxn=g onT,
m=mg sur [getm=mg4+a; only i=1,...,1,

friu-nda:(), i=1,...,1,



Remarks.
o We can search directely weak solutions u € H'(Q) and
7 € L2(Q) of the system (NS y) by using a fixed point
method.

o We can then obtain solutions u € W ?(Q) for p > 2
thanks to the Stokes problem theory.

@ The case p < 2 to study the (NS y) system is more
complicated.



Remarks.

o We can search directely weak solutions u € H'(Q) and
7 € L2(Q) of the system (NS y) by using a fixed point
method.

o We can then obtain solutions u € W ?(Q) for p > 2
thanks to the Stokes problem theory.

@ The case p < 2 to study the (NS y) system is more
complicated.

e For this reason, we will study the Oseen problem (OSy).



Study of problem (OSy)

—Au+curlaxu+Vr=f in (),

divu =0 in Q,
(OS N) uxn=0 onT,
T =7+ ¢ sur I';, 0=1,...,1,

Jpu-ndo=0,i=1,...,1,
(13)
where we have take x = 0 and g = 0. We suppose also that

curl a € L3?(Q)



We introduce the following Hilbert space:

Vy= {veHl(Q); dive=0inQ, vxn=0onT

and fri'v-nzo, 1§z’§I}

v (/Q ]curlv\Q)l/2

is a norm on V y equivalent to the full norm of H *(Q).

and recall that



Before establishing the result of existence of a weak solution for
the problem (13), we will see in what functional space it is
reasonable to take mg and to find the pressure 7w appearing in
(13), knowing that we are first interesting to velocity fields in
u € H'(Q) with £ € L5/°(Q). With a such vector u, we have
curla x u € L%°(Q) — H ~Y(Q). Since Au € H1(Q), we
deduce from the first equation in (13) that V7 € H ~1(Q).
Then the pressure 7 belongs to L?(Q2). Furtheremore,

—A7m =divf —div(curla x u) in Q,

so that A7 € W ~1%/5(Q) and the trace of 7 on T' belongs to
H ~Y2(T') so that we must assume that mo € H ~/2(I).



Theorem

Let fe LY/5(Q), 7o € HY/2(T') and a € D'(Q) such that curla € L3/2(Q).
Then, the problem:

Find (u, 7, ¢) € Vi x L2(Q) x RITL satisfying (13) with (x, 1)r =0 (14)
is equivalent to the problem: Find w € Vi such that

Yve Vy, /curlu-curlvdm+/(curla>< u)'v:/f~vdw—<7ro,v~n>p
Q Q Q

(15)
and find constants co, . ..,cy satisfying Zl o cimesT; + (mo, 1)r = 0 and such
that for any i =1,. I

c~—co—/f Vqum—/(curlaXu)-VqlNdx—(Tro,VqZN-nhﬂ. (16)

v



Using the Lax Milgram theorem and some regularity result of
the Laplacian, we prove the following theorem.

Theorem

Let fe L5/°(Q), curl a € L¥?(Q) and mo € H ~Y/2(T"), then the
problem (13) has a unique solution

(u, m, ) € HY(Q) x L?(Q) x R with (7, 1)r = 0 and we have
the following estimates:

gy < O Fllgorsiy + Imollg-y)s (A7)

Ill ey < C(1+ lleurl @]l gorzgey) (1 g + 7ol -/20),
(18)

where ¢ = (co,...,c1). Moreover, if mo € W /68/5(T) and Q is

C2L, then u e W>$/5(Q) and = € W 16/5(0Q).




Remarque

Even if the pressure m change in ™ — co, the system (13) is equivalent to the
following type-Oseen problem:

—Au+curlaxu+Vr=f and divu=0 in Q,
(OSN) uxn=0 on I,
N m=mg onlp, and w=mo+ay, ¢=1,...,1, onl}y,
where the unknowns constants satisfy for any i =1,...,1:

o = /f Vquw—/(curlax w) - Vg dz — (mo, Vg - n)r.

But, it is clear that the new pressure m does not satisfy the condition (w, 1)r = 0.
v




Remarque

If we suppose that f € [Hg”z(curl, Q)] curla € L*?(Q) and
mo € H-Y/2(T"), then the problems (14) and (15)-(16) are again
equivalent, with the difference that we use here the duality
brackets between [H§’2(curl, )] and Hg’2(curl, Q) in place of
the integral on Q in the right hand side of (15) and the density
of Dy(Q) x D(Q) in the space

M = {(u, m) € HX(Q)xL*Q); —Au+Vre [HY(curl, Q))}

v

It is easy now to extend Theorem 2 to the case where
fe [II(g’.’Q(curl7 )], the divergence operator does not vanish
and the case of nonhomogeneous boundary conditions.



Theorem

Let f€ [HY(curl, Q)], curla € L3/2(Q), x € W 16/5(Q), 7o € H=1/2(T") and
g€ HY?(T"). Then the problem

—Au+curlaxu+Vr=f and divu=x in €,

UXnNn=gxn on I',
m=mg onlp, and w=mo+a; t=1,...,1 onlYy,

Jp u-nde =0, i=1,...,1,

(19)

has a unique solution (u, m, &) € H(Q) x L?(Q) x R! werifying the estimate:

HUHHl(Q) < C(”'fH[Hl?’z(curl,Q)]’ + HWOHH*l/Z(F) + (1 + [|curl a”LiS/Z(gz)) X

x (Il 10750y + | 9llzr1/20y) )

||7T||L2(Q) < C(l + [|curl a||L3/2(Q)) (Hfll[H(?‘2(curl, Q)] + ”7(0”]-[*1/2(1“) +

+ (1 + |lcurl a||L3/2(Q)) X (”XHW 1,6/5 () + g||H1/2(r))>v

where a = (a1, . .., ar). Moreover, if fe L%/%(Q), mg € W 1/6:6/5(T),

iE W7/6’6/5if and § s C2'1i then u € W25/5(Q) and m € W 1.6/5(Q).




e Strong Solutions when p > 6/5.

In the rest of this talk, we suppose that € is C*! and we
are interested in the study of strong solutions for the
system (OSy).

When p < %, because the embedding

W2P(Q) — W P*(Q), the term curla x u € LP(Q2) and
we can use the regularity results on the Stokes problem.
But this is not more the case when p > % and that curl a
belongs only to L*/?(12).

We give in the following theorem the good conditions to
ensure the existence of strong solutions.



Let p > 6/5,
feIP(Q), mp e WIVPP(D), curla € L*(Q)
with 7 3 3 7 3
s:Eifp<§, s:pifp>§, s:5+sifp:§, (20)

for € > 0 arbitrary. Then the solution (u, 7) given by the previous theorem
belongs to W 2P(Q) x W L'P(Q) and satisfies the estimate:

lullw 2.0 @) + 17l 1.0() < C(1+ lleurlalizs (o)) (Ifllzr @) + 7ol 1-1/p0(ry)-




e Generalized Solutions with (p > 2) :

Theorem

|

Let p > 2. Let fe [H, (curl Q)), x € WL (Q)and
ge Wi=t/rr(D), We suppose that mo € W 1=1/77(T') and
curl a € L¥(Q) with 1 = % + % and s satisfies:

3 3
525 if 2<p<3, s:§+6ifp:3 and s=r if p > 3,

for some arbitrary € > 0. Then the problem (19) has a unique
solution (u, m, &) € WIP(Q) x WL (Q) x R satisfying the
estimate

lullwio@ + Il ) < CO+ lleurlalzs @) (I, +

HT P’ (curl, )]/

+ gl w1-1/p0 ) + 1m0l 1-1/mm ry + Il 1.(c2) (21)

where o = (o, ..., Qf).

v




@ Generalized Solutions (p < 2):
Using a duality argument, we obtain the following result :

Theorem

We suppose that p < 2. Soit f € [HOT,’pl(curl, 2)]’, curla € L*(Q2) and
o € W1=1/77(T) with

. 3 9+ 6e 3 3p
=1+4¢€ if p< =, r= f
r +€ if p 2 T 9% 2¢ 1 2

3
it S<p<2, (22)

, 3p , 3 3 3 3 .3

S_(1+6)4p—3—€/(3—p) if p< 3 s = 2+€ if p= 3 and s = > if 2 <p<2,
(23)

where €, € > 0 are arbitrary. Problem (OS ) has a unique solution

(u, 7, @) € WLP(Q) x WLT(Q) x Rl satisfying the estimate:

N

lellw .o < O+ el @l @)1 g7 ey, gy + 170l 11/

Il 2.r(y < CC+ llewrl alloe @) (1F 07 gy, e + I0llw 11777 (0)

V.




The Navier-Stokes problem (NSy)

9

(—Au+curluxu+Vr=Ff
divu =y
uxXn=g

m=my on I'; and m = 7y + ¢;

| Jpu-ndo=0,i=1,...,1,

in €2,
in Q,
on I,

on Fi7



In the search of a proof of the existence of generalized solution
for the Navier-Stokes equations (NS ), we consider the case of
small enough data.

Theorem

Let f€ [HY 7 (curl, Q)), x € W7 (Q), g€ WI—V/PP(T), =y € W 1=1/77(T)

g 3 _ 3p
with 5 <p and =g

1) There exists a constant a1 > 0 such that, if
”‘f”[H(;'/'p/(curl, Q) + [Ixllw Lr(Q) T ”.qulfl/p,P(r) + HT"OHW 1—1/77r(T) <ai,

then, there ezists a solution (u, m, ¢) € WHP(Q) x W L7(Q) x R! to problem
(NS ) verifying the estimate

lull wp ) < C(IIA

~
~

+||X||W1T(Q)+H9”W1 1/p, p(r)+||7TOHW1 1/ (0
(24)

HT P’ (curl, Q)]/

with ¢; = (f, Vai)a,, , + Jr (x —70) VgV n— [(curlux u) VgN.

p
1) Moreover, there exists a constant az €]0,a1] such that this solution is unique,

if

”'f”[HSJ’p,(curl,Q)]’ + [Ixllw 1. ) + ||9HW171/p,p(r) + [Imollyy, 1-1/rmry S Q2

v
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