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I. Basic properties of the functional spaces.
Hilbertian case

Recall first definitions of the following operators, which are
important in the study of several problems in fluid mechanics or
in electromagnetism.

For v = (v1, v2, v3), we set

∇v = (
∂vi
∂xj

)1≤i,j,≤3,

div v = ∇ · v =

i=3∑
i=1

∂vi
∂xi

,

and

curl v = ∇× v = (
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2
).



Even if we consider here the Hilbertian case, we define the following Banach
spaces, for 1 < p <∞:

H p(curl,Ω) = {v ∈ Lp(Ω); curl v ∈ Lp(Ω)} , H p(div,Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω)}

X p(Ω) = H p(curl,Ω) ∩H p(div,Ω),

and their subspaces:

H p
0 (curl,Ω) = {v ∈ H p(curl,Ω); v × n = 0 on Γ} ,

H p
0 (div,Ω) = {v ∈ H p(div,Ω); v · n = 0 on Γ} ,

X p
N (Ω) = {v ∈ X p(Ω); v × n = 0 sur Γ} , X p

T (Ω) = {v ∈ X p(Ω); v · n = 0 sur Γ}

equipped with the graph norm.



Note that

D(Ω) is dense in H p(curl, Ω), H p(div, Ω) and X p(Ω).

We have denoted by v × n (respectively v · n) the tangential

(respectively normal) boundary value of v defined in W − 1
p
,p

(Γ)

(respectively W
− 1

p
,p

(Γ)) as soon as v belongs to H p(curl,Ω)
(respectively H p(div,Ω)).

More precisely, any function v in H p(curl, Ω) (respectively
H p(div,Ω)) has a tangential (respectively normal) trace v × n

(respectively v · n) in W − 1
p
,p

(Γ) (respectively W
− 1

p
,p

(Γ)),
defined by



〈v × n ,ϕ〉Γ =

∫
Ω
v · curlϕdx −

∫
Ω
curl v ·ϕdx , (1)

〈v · n , ϕ〉Γ =

∫
Ω
v · gradϕdx +

∫
Ω

(div v)ϕdx , (2)

for any ϕ ∈W 1,p′(Ω), (resp. for any ϕ ∈W 1,p′(Ω)) where 〈·, ·〉Γ
denotes the duality bracket between W − 1

p
,p

(Γ) and W
1
p
,p′

(Γ)

in (1) and between W
− 1

p
,p

(Γ) and W
1
p
,p′

(Γ) in (2).

Note also that for any 1 ≤ p <∞

D(Ω) is dense in H p
0 (curl,Ω) and in H p

0 (div,Ω).



Theorem 1.1

The space X 2
0(Ω) = X 2

T (Ω) ∩X 2
N (Ω) coincides with H 1

0(Ω).

Proof. Since the imbedding of H 1
0(Ω) in X2

0 (Ω) is obvious, we
study the inverse imbedding.

Let v ∈ X2
0 (Ω) and the extension ṽ of v by 0 outside of Ω.

Since v ∈ XN (Ω), it is easy to check from Green formula (1)
that

curl ṽ ∈ L2(R3).

Similarly, the fact that v ∈ X 2
T (Ω) implies that

div ṽ ∈ L2(R3).

Next, thanks to Plancherel equality, the Fourier transform of ṽ
satisfies

(ξ2
ˆ̃v3 − ξ3

ˆ̃v2, ξ3
ˆ̃v1 − ξ1

ˆ̃v3, ξ1
ˆ̃v2 − ξ2

ˆ̃v1) ∈ L2(R3)

and
ξ1

ˆ̃v1 + ξ2
ˆ̃v2 + ξ3

ˆ̃v3 ∈ L2(R3).



It is then easy to check that for 1 ≤ i, j,≤ 3,

‖ξi ˆ̃vj‖L2(R3) ≤ C(‖curl ṽ‖L2(R3) + ‖div ṽ‖L2(R3)).

Hence,
grad ṽ ∈ L2(R3),

and we obtain the theorem.

Remark. By integrating by parts and using a density
argument, the following identity is readily checked for any
function v in H 1

0(Ω):

‖grad v‖2
L2(Ω)

= ‖curl v‖2
L2(Ω)

+ ‖div v‖2L2(Ω).



Theorem 1.2

Assume that the domain Ω is of class C1,1. Then the space
X 2

T (Ω) is continuously imbedded in H 1(Ω)

Proof.

Step 1. We prove that

H 1(Ω) ∩X 2
T (Ω) is dense in X 2

T (Ω).

Indeed, let v ∈ X 2
T (Ω). Using the density of D(Ω) in

X 2(Ω), let vk ∈ D(Ω) which converges to v in X 2(Ω).

Next, for each k, we consider the unique solution χk in
H1(Ω) with zero mean value, of the problem

∀ϕ ∈ H1(Ω),

∫
Ω
∇χk · ∇ϕ =

∫
Ω
vk · ∇ϕ.

Equivalently, it can be noted that χk solves the Neumann
problem

∆χk = div vk in Ω and ∂nχk = vk · n on Γ.



Due to the regularity assumption on the domain Ω, for each k,
the function χk belongs to H2(Ω), so that the vector field
vk −∇χk is in H 1(Ω).

Finally, due to the convergence of (vk)k in X 2(Ω), it is easy to
check that the sequence (∇χk)k converges in L2(Ω) towards
∇χ, with χ ∈ H2(Ω) solution of the problem

∆χ = div v in Ω and ∂nχ = v · n = 0 on Γ,

and where we observe that∫
Ω
|∇(χk − χ)|2 =

∫
Ω

(vk − v) · ∇(χk − χ).

Hence, the sequence (vk −∇χk +∇χ)k is in H 1(Ω) ∩X 2
T (Ω)

and converges to v in X 2
T (Ω), which proves the density.



Step 2. We use the following inequality:

for any v ∈ H 1(Ω) ∩X 2
T (Ω)

‖grad v‖2
L2(Ω)

= ‖curl v‖2
L2(Ω)

+ ‖div v‖2L2(Ω) (3)

−
∫

Γ
B(v × n , v × n) dτ , (4)

where B denotes the curvature tensor of the boundary.



But

|
∫

Γ
B(v × n , v × n) dτ | ≤ C1

∫
Γ
|v |2 dτ

≤ 1

2
‖grad v‖2

L2(Ω)
+ C2‖v‖2L2(Ω)

.

We deduce then the following inequality:

for any v ∈ H 1(Ω) ∩X 2
T (Ω),

‖grad v‖2
L2(Ω)

≤ C(‖v‖2
L2(Ω)

+ ‖curl v‖2
L2(Ω)

+ ‖div v‖2L2(Ω)).

Finally, we prove the theorem.



Theorem 1.3

Assume that the domain Ω is of class C1,1. Then the space
X 2

N (Ω) is continuously imbedded in H 1(Ω)

Proof.

Firstly we prove that

H 1(Ω) ∩X 2
N (Ω) is dense in X 2

N (Ω)

by using the density of D(Ω) in X 2(Ω) and by solving the
following problem: Find ξ ∈ H 2(Ω) such that

ξ −∆ξ = curl v , div ξ = 0 in Ω,

ξ · n = 0 curl ξ × n = 0 on Γ,

with v belonging to X 2
N (Ω).



Secondly, we use the following inequality: for any
v ∈ H 1(Ω) ∩X 2

N (Ω)

‖grad v‖2
L2(Ω)

= ‖curl v‖2
L2(Ω)

+ ‖div v‖2L2(Ω) (5)

−
∫

Γ
(TrB)(v · n)2 dτ . (6)

Like previously we deduce the following inequality:

for any v ∈ H 1(Ω) ∩X 2
N (Ω)

‖grad v‖2
L2(Ω)

≤ C(‖v‖2
L2(Ω)

+‖curl v‖2
L2(Ω)

+‖div v‖2L2(Ω)).



Finally, we prove the theorem.

More generally, setting

X m,p(Ω) = {v ∈Lp(Ω); div v ∈W m−1,p(Ω),

curl v ∈W m−1,p(Ω), v · n ∈W m− 1
p
,p

(Γ)},

and

Y m,p(Ω) = {v ∈Lp(Ω); div v ∈W m−1,p(Ω),

curl v ∈W m−1,p(Ω), v × n ∈W
m− 1

p
,p

(Γ)},

then we have the following regularity result

Theorem 1.4

Let m ∈ N∗ and Ω of class Cm,1. Then X m,2(Ω) is continuously imbedded in
H m(Ω) and for any v in H m(Ω):

‖v‖H m(Ω) ≤ C
(
‖v‖L2(Ω) + ‖curl v‖H m−1(Ω)

+ ‖div v‖H m−1(Ω) + ‖v · n‖
H

m− 1
2 (Γ)

)
,

with similar properties for the space Y m,2(Ω).



II. L2-Theory for Vector Potentials

We suppose that Ω is an open set possibly multiply connected
sufficiently regular with a boundary Γ non connected. We

denote Γ =
I⋃
i=0

Γi with Γi the connected components of Γ

and Σ =
J⋃
j=1

Σj and Σj a finite number of cuts.

Ω◦ = Ω \ Σ is simply connected.



Theorem 2.1 (General vector potentials)

A vector field u ∈ L 2(Ω) satisfies:

divu = 0 in Ω, 〈u · n , 1〉Γi
= 0, 0 ≤ i ≤ I, (7)

iff there exists a vector potential ψ0 dans H 1(Ω) such that

u = curlψ0 and divψ0 = 0 in Ω, (8)

Remark: Note that the condition 〈u · n , 1〉Γi
= 0 makes sense

because, thanks to Green Formula (2), the restriction of u ·n to
each Γi belongs to H−1/2(Γi).



Proof: i) Let u be any function satisfying (7). Using the above
notation, for 0 ≤ i ≤ I, we consider the solution χi ∈ H1(Ωi) of
the following Neumann problem

∆χ0 = 0 in Ω0,
∂χ0

∂n
= u · n on Γ0 and

∂χ0

∂n
= 0 on ∂O

∆χi = 0 in Ωi,
∂χi
∂n

= u · n on Γi.

Then the function ũ defined by

ũ =


u in Ω,

grad χi in Ωi, 0 ≤ i ≤ I
0 inR3 \ ∂O

belongs to L 2(R3) with divergence-free in R3.



Taking its Fourier transform and denoting it simply by û leads
to the equation

ξ1û1 + ξ2û2 + ξ3û3 = 0.

Next, observe that conditions (8) are satisfied by a function ψ0

if and only if

û1 = ξ2ψ̂03− ξ3ψ̂02, û2 = ξ3ψ̂01− ξ1ψ̂03, û3 = ξ1ψ̂02− ξ2ψ̂01, (9)

and
ξ1ψ̂01 + ξ2ψ̂02 + ξ3ψ̂03 = 0. (10)

In L2(R3), system (9)- (10) is equivalent to

ψ̂01 =
ξ2û3 − ξ3û2

|ξ|2
, ψ̂02 =

ξ1û3 − ξ3û1

|ξ|2
, ψ̂03 =

ξ2û1 − ξ1û2

|ξ|2
(11)



Let us define the function ψ0 by equations (11). Its gradient is
clearly in L2(Ω) due to the inequalities

|ξjψ̂0k| ≤
3∑
`=1

|û`|

ii) Conversely, for any ψ0 ∈H 1(Ω),

div(curlψ0) = 0.

Moreover, for 0 ≤ i ≤ I, let νi be a function of class C∞ on Ω
which is equal to 1 in a neighbourhood of Γi and vanishes in a
neighbourhood of Γk, with 0 ≤ k ≤ I, k 6= i. We have

〈u · n , 1〉Γi
= 〈curl (νiψ0) · n , 1〉Γ =

∫
Ω

div(curl (νiψ0))dx = 0

which is the desired condition.



We require now some preliminaries.

First, for any function q in H 1(Ω◦), grad q is the gradient of q
in the sense of distributions in D′(Ω◦). It belongs to L2(Ω◦) and
therefore can be extended to L2(Ω). In order to distinguish this
extension from the gradient of q in D′(Ω), we denote it by

g̃rad q.

Lemma 2.2 (Green Formula)

If ψ belongs to H 2
0 (div, Ω), the restriction of ψ · n to any Σj

belongs to the dual space [H
1/2
00 (Σj)]

′, and the following
Green’s formula holds: ∀χ ∈ H 1(Ω◦),

J∑
j=1

〈ψ · n , [χ ]j〉Σj
=

∫
Ω◦
ψ · gradχdx +

∫
Ω◦

χdivψ dx , (12)

where we recall that [χ]j is the jump of χ through Σj .



We introduce the following space

Θ2(Ω◦) =
{
r ∈ H 1(Ω◦); [ r ]j = constant, 1 ≤ j ≤ J

}
.

Using the previous Green formula, it is easy to prove the
following lemma.

Lemma 2.3 (Characterization of Θ2(Ω◦))

Let r belong to H 1(Ω◦). Then r belongs to Θ2(Ω◦) if and only if

curl(g̃rad r) = 0 in Ω.



Theorem 2.4 (Tangent Vector Potential)

A vector field u ∈ L 2(Ω) satisfies:

divu = 0 in Ω, 〈u · n , 1〉Γi
= 0, 0 ≤ i ≤ I,

if and only if there exists a vector potential ψ in H 1(Ω) such
that

u = curlψ and divψ = 0 in Ω,

ψ · n = 0 on Γ, 〈ψ · n , 1〉Σj
= 0, 1 ≤ j ≤ J.

(13)

This function ψ is unique and we have the estimate:

‖ψ‖H 1(Ω) ≤ C‖u‖L2(Ω). (14)



Before to prove this theorem, we will give some preliminary
results.

Remark. i) The statement of this theorem is independent of the
particular choice of the admissible set of cuts {Σj ; 1 ≤ j ≤ J}.

ii) Clearly the uniqueness of the function ψ will follow from the
characterization of the kernel

K 2
T (Ω) = {v ∈ L2(Ω), div v = 0, curl v = 0 in Ω

and v · n = 0 on Γ}



Proposition 2.5 (Characterization of K 2
T (Ω) )

The dimension of the space K 2
T (Ω) is equal to J . It is spanned

by the functions g̃rad qTj , 1 ≤ j ≤ J , where each qTj ∈ H1(Ω◦) is
the solution, unique up to an additive constant, of the problem

−∆qTj = 0 in Ω◦,

∂n q
T
j = 0 on Γ,[

qTj

]
k

= constant and [ ∂n q
T
j ]k = 0, 1 ≤ k ≤ J,〈

∂n q
T
j , 1

〉
Σk

= δj k, 1 ≤ k ≤ J,

(15)



Proof. This problem is in fact equivalent to the problem:

Find qTj ∈ Θ2(Ω◦) such that

∀r ∈ Θ2(Ω◦),

∫
Ω◦

grad qTj · grad r dx = [ r ]j

which has a solution, unique up to an additive constant, by
using Lax-Milgram Lemma. Note that Ω◦ is not a Lipschitzian
domain.

Note also that for any r ∈ D(Ω), we have〈
div (g̃rad qTj ), r

〉
= −

∫
Ω
g̃rad qTj · grad r dx

= −
∫

Ω◦
grad qTj · grad r dx = 0,



As an immediate consequence of this proposition, the
compactness of X 2

T (Ω) into L 2(Ω) and Peetre-Tartar Theorem,
we have

Corollary 2.6 (Equivalence of Norms)

On the space X 2
T (Ω), the seminorm

v 7→ ‖curl v‖L2(Ω) + ‖div v‖L2(Ω) +

J∑
j=1

|〈v · n , 1〉Σj |, (16)

is equivalent to the norm ‖ · ‖X 2(Ω). In particular, we have the

following inequality for every function v ∈ H 1(Ω) with
v · n = 0 on Γ:

‖v‖H 1(Ω) ≤ C
(
‖curl v‖L2(Ω) + ‖div v‖L2(Ω) +

J∑
j=1

〈v · n , 1〉Σj

)
.

(17)



Proof of Theorem ”Tangent Vector Potential”
Existence

1 Assume that (7) and let ψ0 ∈ H 1(Ω) denote the general
potential vector associated with u :

u = curlψ0 and divψ0 = 0 in Ω.

2 Let χ ∈ H 1(Ω) be the solution of the problem :

−∆χ = 0 in Ω and ∂n χ = ψ0 · n on Γ.

3 Setting ψ1 = ψ0 − gradχ, then the function

ψ = ψ1 −
J∑
j=1

〈ψ1 · n , 1〉Σj
g̃rad qTj

is the vector potential required.

Uniqueness : The uniqueness of this function ψ is a
consequence of the characterization of the kernel K 2

T (Ω).
Note that K 2

T (Ω) = {0} if Ω is simply connected



Theorem 2.7 (Normal vector potentials)

A vector field u ∈ L 2(Ω) satisfies:

u · n = 0 on Γ and div u = 0 in Ω, 〈u · n , 1〉Σj
= 0, 0 ≤ j ≤ J,

iff there exists a vector potential ψ in X 2(Ω) such that

u = curlψ and divψ = 0 in Ω, (18)

ψ × n = 0 on Γ, (19)

〈ψ · n , 1〉Γi
= 0, 1 ≤ i ≤ I. (20)

This function is unique and moreover, we have:

‖ψ‖H 1(Ω) ≤ C‖u ‖L2(Ω).

Remark : If u ∈ H 2
0 (div, Ω) then the condition 〈u · n , 1〉Σj

= 0, 1 ≤ j ≤ J, is

necessary and sufficient for the existence of the vector potential ψ satisfying (69)

and (69). The condition 〈ψ · n , 1〉Γi
= 0, 0 ≤ i ≤ I ensures the uniqueness of ψ.



As previously, the uniqueness result is linked to the
characterization of the kernel

K 2
N (Ω) = {v ∈ L2(Ω), div v = 0, curl v = 0 in Ω and v×n = 0 on Γ}

Proposition 2.8 (Normal Vector Potential)

The dimension of the space K 2
N (Ω) is equall to I. It is spanned

by the functions grad qNj , 1 ≤ j ≤ J , where each qNj ∈ H1(Ω) is
the unique solution of the problem

(PN )

{
−∆qNi = 0 in Ω, qNi = 0 on Γ0, q

N
i = constant on Γk,〈

∂n q
N
i , 1

〉
Γ0

= −1 and
〈
∂n q

N
i , 1

〉
Γk

= δik, 1 ≤ k ≤ I.



Proof. Let Θ(Ω) denote the space

Θ(Ω) =
{
r ∈ H 1(Ω); r|Γ0 = 0 and r|Γi = constant, 1 ≤ i ≤ I

}
.

This problem is in fact equivalent to the problem:

Find qNi ∈ Θ(Ω) such that

∀r ∈ Θ(Ω),

∫
Ω
grad qNi · grad r dx = r|Γi ,

which has a unique solution, by using Lax-Milgram Lemma.

The functions grad qNj for 1 ≤ i ≤ I are obviously independent

and belong to K 2
N (Ω). It remains to prove that they span

K 2
N (Ω). Take any function w in K 2

N (Ω) and consider the
function

u = w −
I∑
i=1

〈w · n , 1〉Γi
grad qNi .



It is easy to prove that u satisfies (7), so that it can be written
curlψ0, for some ψ0 in H 1(Ω). This allows to compute∫

Ω
u · u =

∫
Ω
u · curlψ0 =

∫
Ω
curlu ·ψ0 + 〈u × n , ψ0〉Γ = 0

so that u is equal to 0. That ends the proof.



As previously this proposition has a corollary about equivalent
norms.

Corollary 2.9 (Equivalence of Norms)

On the space X 2
N (Ω), the seminorm

v 7→ ‖curl v‖L2(Ω) + ‖div v‖L2(Ω) +

I∑
i=1

|〈v · n , 1〉Γi |, (21)

is equivalent to the norm ‖ · ‖X 2(Ω). In particular, we have the

following inequality for every function v ∈ H 1(Ω) with
v × n = 0 on Γ:

‖v‖H 1(Ω) ≤ C
(
‖curl v‖L2(Ω) + ‖div v‖L2(Ω) +

I∑
i=1

〈v · n , 1〉Γi

)
.

(22)



Proof of Theorem ”Normal Vector Potential” The proof is
divided into three steps.

Step 1. Necessary conditions. We assume that

u = curlψ and divψ = 0 in Ω,

ψ × n = 0 on Γ,

〈ψ · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

It is clear that u = curlψ is divergence-free. Moreover for any χ ∈ H2(Ω),
Green formulas yield∫

Ω
curlψ · gradχ = 〈u · n , χ〉Γ , (23)∫

Ω
curlψ · gradχ = −〈ψ × n , gradχ〉Γ . (24)

Therefore if ψ × n = 0 on Γ, a density argument gives curlψ · n = 0 on Γ.
Hence,

curlψ ∈ H 2
0 (div, Ω)

and by Green Formula, we prove that

〈curlψ · n , 1〉Σj
= 0 for 1 ≤ j ≤ J.



Step 2. Existence of the normal potential vector.
We know that there exists ψ0 ∈ H 1(Ω) with

u = curlψ0 and divψ0 = 0.

Setting

V 2
T (Ω) = {v ∈ X 2

T (Ω); div v = 0 in Ω and 〈v · n , 1〉Σj
= 0, 1 ≤ j ≤ J},

Then using Lax-Milgram Lemma, the following problem:
Find ξ in V 2

T (Ω) such that for any ϕ ∈ V 2
T (Ω)

∫
Ω
curl ξ ·curlϕ dx =

∫
Ω
ψ0 ·curlϕdx−

∫
Ω
curlψ0 ·ϕdx ,

(25)
has a unique solution ξ ∈ V 2

T (Ω). Note that the right-hand
side defines an element of (V 2

T (Ω))′.
Next, we want to extend this formulation to any test
function in X 2

T (Ω).



For that, let ϕ̃ ∈ X 2
T (Ω) and χ in H 2(Ω) satisfying:

∆χ = div ϕ̃ in Ω and
∂ χ

∂n
= 0 on Γ. (26)

Let then ϕ ∈ V 2
T (Ω) satisfying:

ϕ = ϕ̃− gradχ−
J∑
j=1

〈(ϕ̃− gradχ) · n , 1〉Σj g̃rad q
T
j . (27)

Observe that∫
Ω
curlψ0 · gradχdx =

∫
Ω
u · gradχdx == 0,

and we obtain∫
Ω
curlψ0 · g̃rad qTj dx =

∫
Ω◦

u · grad qTj dx

=

J∑
k=1

[qTj ]k〈u · n , 1〉Σk
+ 〈u · n , qTj 〉Γ = 0.



Hence, (25) becomes: find ξ ∈ V 2
T (Ω) such that for any

ϕ̃ ∈ X 2
T (Ω):∫

Ω
curl ξ·curl ϕ̃ dx =

∫
Ω
ψ0·curl ϕ̃dx−

∫
Ω
curlψ0·ϕ̃ dx . (28)

In fact, every solution of (28) also solves the problem
−∆ ξ = 0, div ξ = 0 in Ω,

ξ · n = 0, (ψ0 − curl ξ)× n = 0 on Γ,

〈ξ · n , 1〉Σj = 0, 1 ≤ j ≤ J.



Finally, setting ψ1 = ψ0 − curl ξ, and

ψ = ψ1 −
I∑
i=1

〈ψ1 · n , 1〉Γi grad q
N
i ,

it follows that the function ψ belongs to L2(Ω) and satisfies the
required properties. Observe that ξ ∈ H 2(Ω) and then
ψ ∈ H 1(Ω).

Step 3. Uniqueness. The uniqueness of this function ψ
is a consequence of the characterization of the kernel
K 2

N (Ω).

Note that K 2
N (Ω) = {0} if Γ is connected



III. Inequalities for Vector Fields.
General Lp-theory

Theorem 3.1 (Sobolev’s inequalities I)

Any function v ∈W 1,p(Ω) ∩X p
N (Ω) satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (29)

W. Von Wahl (1992) (I = 0, i.e Γ is connected).



Proof.
We introduce the linear integral operator:

T λ(x ) = −
1

2π

∫
Γ
λ(ξ)

∂

∂n
|x − ξ|−1 dσξ,

T : Lp(Γ) −→W 1,p(Γ) is continuous and consequently compact from Lp(Γ)
into Lp(Γ). By Fredholm alternative the space Ker(Id+ T ) is of finite
dimension (equal to I) and Im(Id +T) is closed. Then the operator Id+ T is
linear, continuous and surjective from Lp(Γ) onto Im(Id +T). Using the
theorem of open map, for any v ∈W 1,p(Ω) we have :

‖v · n‖Lp(Γ) ≤ C
(
‖(Id+ T )(v · n)‖Lp(Γ) +

I∑
i=1

|〈v · n , 1〉Γi
|
)

(30)

For any v ∈W 1,p(Ω) with v × n = 0 on Γ, we have the following intégral
représentation:

(Id+ T )(v · n) = −
1

2π

(
grad

∫
Ω

1

|x − y |
divy v(y) dy

)
· n

−
1

2π

(
curl

∫
Ω

1

|x − y |
curly v(y) dy

)
· n (31)



Using the trace inequality, we prove:

‖(Id+ T )(v · n)‖Lp(Γ) ≤ C
(∥∥∥grad∫

Ω

1

|x − y |
divy v(y) dy

∥∥∥
W 1,p(Ω)

+
∥∥∥ curl∫

Ω

1

|x − y |
curly v(y)dy

∥∥∥
W 1,p(Ω)

)
.

Using then the Calderón-Zygmund inequalities, we get:

‖(Id+ T )(v · n)‖Lp(Γ) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω)

)
.

From (30) we obtain directly:

‖v · n‖Lp(Γ) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (32)



Moreover, from (31) and using triangular inequality we have:

‖v · n‖
W

1− 1
p
,p

(Γ)
≤

(
‖T (v · n)‖

W
1− 1

p
,p

(Γ)
+
∥∥∥grad∫

Ω

1

|x − y |
divy v(y) dy

∥∥∥
W

1− 1
p
,p

(Γ)

+
∥∥∥curl∫

Ω

1

|x − y |
curly v(y) dy

∥∥∥
W

1− 1
p
,p

(Γ)

)
,

and thanks to the trace’s theorem we have:

‖v · n‖
W

1− 1
p
,p

(Γ)
≤ C

(
‖v · n‖Lp(Γ) +

∥∥∥grad∫
Ω

1

|x − y |
divy v(y) dy

∥∥∥
W 1,p(Ω)

+
∥∥∥ curl∫

Ω

1

|x − y |
curly v(y)dy

∥∥∥
W 1,p(Ω)

)
.

Using again the Calderón-Zygmund inequalities and (32), we get:

‖v ·n‖
W

1− 1
p
,p

(Γ)
≤ C

(
‖div v‖Lp(Ω)+‖curl v‖Lp(Ω)+

I∑
i=1

|〈v ·n , 1〉Γi
|
)
. (33)



As v ∈W
1− 1

p
,p

(Γ), by the trace’s theorem, there exists u ∈W 1,p(Ω) such
that:

v = u on Γ and ‖u‖W 1,p(Ω) ≤ C‖v‖
W

1− 1
p
,p

(Γ)
.

Because v × n = 0 on Γ, v |Γ = (v · n)n , using then (33) we get successively

‖u‖W 1,p(Ω) ≤ C‖v · n‖
W

1− 1
p
,p

(Γ)

‖u‖W 1,p(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (34)

Because u − v ∈W 1,p
0 (Ω), we know that for any function w in W 1,p

0 (Ω),
we have the following integral representation:

w = −grad
1

4π

∫
Ω

1

|x − y |
divy w(y) dy +curl

1

4π

∫
Ω

1

|x − y |
curly w(y) dy .

Using again the Calderón-Zygmund inequalities, we get

‖∇w‖Lp(Ω) ≤ C
(
‖divw‖Lp(Ω) + ‖curlw‖Lp(Ω)

)
. (35)

Applying (35) to w = v − u ∈W 1,p
0 (Ω), we obtain:

‖∇ (v−u)‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω)+‖div u‖Lp(Ω)+‖curl v‖Lp(Ω)+‖curlu‖Lp(Ω)

)
.

Finally, we deduce the required estimate by using directly (34).



Using the Hahn-Banach Theorem, we prove the following lemma

Lemma 3.2

The space W 1,p(Ω) ∩X p
N (Ω) is dense in the space X p

N (Ω).

Proof. Let ` belongs to (X p
N (Ω))′, the dual space of X p

N (Ω).

We know that there exist f ∈ Lp
′
(Ω), g ∈ Lp

′
(Ω) and

h ∈ Lp′(Ω) such that for any v ∈ X p
N (Ω),

〈`, v〉 =

∫
Ω
f · v dx +

∫
Ω
hdiv v dx +

∫
Ω
g · curl v dx , (36)

We suppose that

∀v ∈W 1,p(Ω) ∩X p
N (Ω), 〈`, v〉 = 0. (37)



So, we have in the sense of distributions in Ω

f −∇h+ curl g = 0. (38)

Therefore, due to (37) and (36), we have :
for any χ ∈W 2,p(Ω) ∩W 1,p

0 (Ω)∫
Ω
f · ∇χdx +

∫
Ω
h∆χdx = 0. (39)

Note that div f = ∆h ∈W 1,p′(Ω). Because h ∈ Lp′(Ω), we
know that h|Γ ∈W

−1/p′,p′(Γ) and we have:

for any χ ∈W 2,p(Ω) ∩W 1,p
0 (Ω)∫

Ω
h∆χdx − 〈div f , χ〉

W −1,p′ (Ω)×W 1,p
0 (Ω)

= 〈h, ∂ χ
∂n
〉Γ.



As ∫
Ω
f · ∇χdx = −〈div f , χ〉

W −1,p′ (Ω)×W 1,p
0 (Ω)

,

it follows from (39) that

〈h, ∂ χ
∂n
〉Γ = 0, ∀χ ∈W 2,p(Ω) ∩W 1,p

0 (Ω). (40)

Now, let µ be any element of W
1− 1

p
,p

(Γ). Then, there exists an
element χ of W 2,p(Ω) ∩W 1,p

0 (Ω) such that ∂ χ
∂n = µ on Γ. Hence,

(40) implies that

〈h, µ 〉
W
− 1

p′ ,p
′
(Γ)×W 1− 1

p ,p
(Γ)

= 0,

and h = 0 in W
− 1

p′ ,p
′
(Γ). Because ∆h belongs to W −1,p′(Ω)

and h ∈ Lp′(Ω), then h ∈W 1,p′

0 (Ω). As a consequence, due to

(38), curl g belongs to Lp
′
(Ω). Finally, let v in X p

N (Ω).



From (38) and since h ∈W 1,p
0 (Ω), we can write∫

Ω
f ·v dx+

∫
Ω
hdiv v dx+

∫
Ω
curl g ·v dx = 0, ∀v ∈ X p

N (Ω).

(41)
As g ∈ H p′(curl, Ω), we have also

∀v ∈ H p
0(curl,Ω),

∫
Ω
curl g · v dx =

∫
Ω
g · curl v dx .

Then it follows from the last equality and (41) that ` vanishes
on X p

N (Ω), thus proving the required density.



As a consequence, we have the following result:

Theorem 3.3 (Imbedding of X p
N (Ω) in W 1,p(Ω))

The space X p
N (Ω) is continuously imbedded in W 1,p(Ω) and

there exists a constant C, such that for any v in X p
N (Ω):

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

+

I∑
i=1

|〈v · n , 1〉Γi |
)
. (42)



As an immediate consequence of this theorem, the compactness
of X p

N (Ω) into L p(Ω) and Peetre Theorem, we have

Corollary 3.4 (Equivalence of Norms)

On the space X p
N (Ω), the seminorm

v 7→ ‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi |, (43)

is equivalent to the norm ‖ · ‖X p(Ω). In particular, we have the

following inequality for every function v ∈W 1,p(Ω) with
v × n = 0 on Γ:

‖v‖W 1,p(Ω) ≤ C
(
‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) +

I∑
i=1

〈v · n , 1〉Γi

)
.

(44)



Theorem 3.5 (Sobolev’s inequalities II)

Any function v ∈W 1,p(Ω) ∩X p
T (Ω) satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n , 1〉Σj
|
)
. (45)

W. Von Wahl (1992) (J = 0, i.e Ω is simply connected).



Idea of the proof of (45):

We introduce the linear integral operator

Rλ(x ) =
1

2π

∫
Γ
curl (

λ(ξ)

|x − ξ|
)× n dσξ.

R : Lp(Γ) −→W 1,p(Γ) is continuous and then compact from Lp(Γ) into
Lp(Γ). Fredholm alternative implies that Ker(Id+R) is of finite dimension
(equal to J) and for any v ∈W 1,p(Ω):

‖v × n‖Lp(Γ) ≤ C
(
‖(Id+R)(v × n)‖Lp(Γ) +

J∑
j=1

|〈v · n , 1〉Σj
|
)

(46)

For any v ∈W 1,p(Ω) with v · n = 0 on Γ, we have :

(Id+R)(v × n) =
1

2π

(
grad

∫
Ω

1

|x − y |
divy v(y) dy

)
× n

+
1

2π

(
grad

∫
Γ

1

|x − ξ|
(v · n)(ξ) dσξ

)
× n (47)

−
1

2π

(
curl

∫
Ω

1

|x − y |
curly v(y) dy

)
× n .

and the rest of the proof is similar to the case of the operator T .



As for the case p = 2, we prove the following lemma

Lemma 3.6

The space W 1,p(Ω) ∩X p
T (Ω) is dense in the space X p

T (Ω).

As a consequence, we have the following result:

Theorem 3.7 (Imbedding of X p
T (Ω) in W 1,p(Ω))

The space X p
T (Ω) is continuously imbedded in W 1,p(Ω) and

there exists a constant C, such that for any v in X p
T (Ω):

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖div v‖Lp(Ω) +

‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n , 1〉Σi |
)
. (48)



As an immediate consequence of this theorem, the compactness
of X p

T (Ω) into L p(Ω) and Peetre Theorem, we have

Corollary 3.8 (Equivalence of Norms)

On the space X p
T (Ω), the seminorm

v 7→ ‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) +

J∑
j=1

|〈v · n , 1〉Σj |, (49)

is equivalent to the norm ‖ · ‖X p(Ω). In particular, we have the

following inequality for every function v ∈W 1,p(Ω) with
v · n = 0 on Γ:

‖v‖W 1,p(Ω) ≤ C
(
‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) +

J∑
j=1

〈v ·n , 1〉Σj

)
.

(50)



Recall the following spaces

X m,p(Ω) = {v ∈Lp(Ω); div v ∈W m−1,p(Ω),

curl v ∈W m−1,p(Ω), v · n ∈W m− 1
p
,p

(Γ)},
and

Y m,p(Ω) = {v ∈Lp(Ω); div v ∈W m−1,p(Ω),

curl v ∈W m−1,p(Ω), v × n ∈W m− 1
p
,p

(Γ)},
then we have the following regularity result

Theorem 3.9

Let m ∈ N∗ and Ω of class Cm,1. Then X m,p(Ω) is continuously
imbedded in W m,p(Ω) and for any v in W m,p(Ω):

‖v‖W m,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖W m−1,p(Ω)

+ ‖div v‖W m−1,p(Ω) + ‖v · n‖
W

m− 1
p ,p

(Γ)

)
,

with similar properties for the space Y m,p(Ω).



IV. Lp-Theory for Vector Potentials

To study the Stokes problems, we need some results concerning
the vector potentials and the inf-sup conditions.

Theorem 4.1 (General vector potentials)

u ∈ H p(div, Ω) satisfies:

divu = 0 in Ω, 〈u · n , 1〉Γi
= 0, 0 ≤ i ≤ I, (51)

iff there exists a vector potential ψ0 in W 1,p(Ω) such that

u = curlψ0 and divψ0 = 0 in Ω, (52)



Proof: Here, we will construct only the general vector potential
ψ0 in W 1,p(Ω). Let u be any function satsfying (51). As for
the case p = 2 , we consider for 0 ≤ i ≤ I the solution
χi ∈W 1,p(Ωi) of the following Neumann problem

∆χ0 = 0 in Ω0,
∂χ0

∂n
= u · n on Γ0 and

∂χ0

∂n
= 0 on ∂O

∆χi = 0 in Ωi,
∂χi
∂n

= u · n on Γi,

and the function ũ defined by

ũ =


u in Ω,

grad χi in Ωi, 0 ≤ i ≤ I
0 inR3 \ ∂O

which belongs to H p(div, R3) with divergence-free in R3.



The function ψ0 = curl(E ∗ ũ ), with E the fundamental
solution of the laplacian, satisfies

curlψ0 = ũ and divψ0 = 0 inR3.

Applying the Calderón Zygmund inequality, we obtain

‖∇ψ0‖Lp(R3) ≤ C‖∆ (E ∗ ũ)‖Lp(R3) ≤ C‖ũ‖Lp(R3) ≤ C‖u‖Lp(Ω)

and ψ0|Ω belongs to W 1,p(Ω).



With a similar proof that to the case p = 2, we have

Theorem 4.2 (Tangent Vector Potential)

A function u in H p(div, Ω) satisfies (51) if and only if there
exists a vector potential ψ in W 1,p(Ω) such that

u = curlψ and divψ = 0 in Ω,

ψ · n = 0 on Γ, 〈ψ · n , 1〉Σj
= 0, 1 ≤ j ≤ J.

(53)

This function ψ is unique and we have the estimate:

‖ψ‖W 1,p(Ω) ≤ C‖u‖Lp(Ω). (54)



Theorem 4.3 (Inf-Sup condition in Banach spaces)

Let X and M be two reflexive Banach spaces and X ′ and M ′

their dual spaces. Let a be the continuous bilinear form defined
on X ×M , let A ∈ L(X; M ′) and A′ ∈ L(M ; X ′) be the
operators defined by

∀v ∈ X, ∀w ∈M, a(v, w) = < Av,w > = < v,A′w >

and V = KerA. The following statements are equivalent:
i) There exists β > 0 such that

inf
w∈M
w 6=0

sup
v∈X
v 6=0

a(v, w)

‖v‖X ‖w‖M
≥ β. (55)

ii) The operator A : X/V 7→M ′ is an isomophism and 1/β is

the continuity constant of A−1.
iii) The operator A′ : M 7→ X ′⊥V is an isomophism and 1/β is
the continuity constant of (A′)−1.



Proof.

First, we note that ii)⇔ iii) because (X/V )′ = X ′⊥V where
this last space contains the elements f ∈ X ′ satisfying
〈f, v〉 = 0 for any v ∈ V . It suffices then to prove that i)⇔ iii).
We begin with the implication i)⇒ iii). Due to (55), we
deduce that there exists a constant β > 0 such that:

∀w ∈M, ‖w‖M ≤
1

β
sup
v∈X
v 6=0

|a(v, w)|
‖v‖X

.

So,
‖w‖M ≤

1

β
‖A′w‖X′ , (56)

and A′ is injective. Moreover, ImA′ is a closed subspace of X ′

where A′ : M → X ′. Moreover, ImA′ = (KerA)⊥ = X ′ ⊥ V . It
remains to prove that iii)⇒ i). For this, it suffices to prove
that if iii) holds, then (56) also holds and (55) follows
immediately.



Remark

As consequence, if the Inf-Sup condition (55) is satisfied, then
we have the following properties:

i) Because A′ : M 7→ X ′⊥V is an isomophism, then for any
f ∈ X ′, satisfying the compatibility condition

∀v ∈ V, < f, v > = 0,

there exists a unique w ∈M such that

∀v ∈ X, a(v, w) = < f, v > and ‖w‖M ≤
1

β
‖f‖X′ . (57)

ii) Because A : X/V 7→M ′ is an isomophism, then for any
g ∈M ′, ∃v ∈ X, unique up an additive element of V , such that:

∀w ∈M, a(v, w) = < g,w > and ‖v‖X/V ≤
1

β
‖g‖M ′

.



We define the space

V p
T (Ω) = {w ∈ X p

T (Ω); divw = 0 in Ω and

〈w · n , 1〉Σj = 0, 1 ≤ j ≤ J},

which is a Banach space for the norm ‖ · ‖X p(Ω).

Lemma 4.4 (Inf Sup Condition)

The following Inf-Sup Condition holds: there exists a constant
β > 0, such that

inf
ϕ∈V p′

T (Ω)
ϕ6=0

sup
ξ∈V p

T (Ω)
ξ 6=0

∫
Ω curl ξ · curlϕdx

‖ξ‖X p
T (Ω)‖ϕ‖X p′

T (Ω)

≥ β. (58)



Proof. We need the following Helmholtz decomposition: every
vector function g ∈ Lp(Ω) can be decomposed into a sum

g = ∇χ+ z ,

where

z ∈ H p(div, Ω) with div z = 0 and χ ∈W 1,p
0 (Ω)

with the estimate

‖∇χ‖Lp(Ω) + ‖z‖Lp(Ω) ≤ C‖g‖Lp(Ω). (59)

Let ϕ any function of V p′

T (Ω). We know that

‖ϕ‖
X p′

T (Ω)
≤ C‖curlϕ‖

Lp′ (Ω)
= C sup

g∈Lp(Ω)
g 6=0

∣∣ ∫
Ω curlϕ · g dx

∣∣
‖g‖Lp(Ω)

.

(60)



We set

z̃ = z −
I∑
i=1

〈z · n , 1〉Γi ∇ qNi .

So,

z̃ ∈ Lp(Ω), div z̃ = 0 and 〈z̃ · n , 1〉Γi = 0 ∀0 ≤ i ≤ I.

By Theorem of tangential vector potentiel, there exists a vector
potential ψ ∈ V p

T (Ω) such that z̃ = curlψ in Ω. This implies
that ∫

Ω
curlϕ · g dx =

∫
Ω
curlϕ · z dx =

∫
Ω
curlϕ · z̃ dx .



Moreover, we have

‖z̃‖Lp(Ω) ≤ ‖z‖Lp(Ω) +

I∑
i=1

|〈z · n , 1〉Γi |‖∇ qNi ‖Lp(Ω)

≤ ‖z‖Lp(Ω) + C ‖z · n‖
W
− 1

p ,p
(Γ)
.

Since z belongs to H p(div, Ω) and div z = 0, by using the
continuity of the normal trace operator on H p(div, Ω), (59)
and (61) we obtain

‖z̃‖Lp(Ω) ≤ C‖z‖Lp(Ω) ≤ C‖g‖Lp(Ω). (61)

Finally, using Corollary ”equivalence of norms” we can write∣∣ ∫
Ω curlϕ · g dx

∣∣
‖g‖Lp(Ω)

≤ C
∣∣ ∫

Ω curlϕ · z̃ dx
∣∣

‖z̃‖Lp(Ω)
≤ C

∣∣ ∫
Ω curlϕ · curlψ dx

∣∣
‖ψ‖X p

T (Ω)

,

and the Inf-Sup Condition (58) follows immediately from (60).



In the next, we illustrate the importance goal of the Inf-Sup
Condition by using it to resolve the following first elliptic
system.

Proposition 4.5 (Neumann problem for vector fields)

Assume that v belongs to Lp(Ω). Then, the following problem
−∆ ξ = curl v , div ξ = 0 in Ω,

ξ · n = 0, (curl ξ − v)× n = 0 on Γ,

〈ξ · n , 1〉Σj = 0, 1 ≤ j ≤ J,
(62)

has a unique solution in W 1,p(Ω) and we have:

‖ξ‖W 1,p(Ω) ≤ C‖v‖Lp(Ω). (63)

Moreover, if v ∈W 1,p(Ω) and Ω is of class C 2,1, then the
solution ξ is in W 2,p(Ω) and satisfies the estimate:

‖ξ‖W 2,p(Ω) ≤ C‖v‖W 1,p(Ω). (64)



Proof.

i) Existence and uniqueness. Thanks to Inf-Sup condition,
the following problem: find ξ ∈ V p

T (Ω) such that

∀ϕ ∈ V p′

T (Ω),

∫
Ω
curl ξ · curlϕ dx =

∫
Ω
v · curlϕ dx . (65)

satisfies the Inf-Sup condition (58). So, it has a unique solution
ξ ∈ V p

T (Ω) since the right-hand side defines an element of

(V p′

T (Ω))′ . By using previous imbeddings results, this solution
ξ belongs to W 1,p(Ω). Next, we want to extend (65) to any

test function ϕ̃ in X p′

T (Ω). We consider the solution χ in
W 1,p′(Ω) up to an additive constant of the Neumann problem:

∆χ = div ϕ̃ in Ω and
∂ χ

∂n
= 0 on Γ. (66)

Then, we set

ϕ = ϕ̃− gradχ−
J∑
j=1

〈(ϕ̃− gradχ) · n , 1〉Σj g̃rad q
T
j . (67)



Observe that ϕ belongs to V p′

T (Ω). Hence (65) becomes:
Find ξ ∈ V p

T (Ω) such that

∀ϕ̃ ∈ X p′

T (Ω),

∫
Ω
curl ξ · curl ϕ̃ dx =

∫
Ω
v · curl ϕ̃dx . (68)

It is easy to proof that every solution of (62) also solves (68).
Conversely, let ξ the solution of the problem (68). Then,

−∆ ξ = curl curl ξ = curl v in Ω.

Moreover, since ξ belongs to the space V p
T (Ω) we have

div ξ = 0 in Ω, ξ · n = 0 on Γ and 〈ξ · n , 1〉Σj = 0,

for any 1 ≤ j ≤ J.
Then, it remains to check the boundary condition of Problem
(62):

curl ξ × n = v × n on Γ.

But

z = curl ξ − v ∈ H p(curl, Ω) with curl z = 0 in Ω.



Consequently, for any ϕ̃ ∈ X p′

T (Ω) we have:∫
Ω
z · curl ϕ̃dx − 〈z × n , ϕ̃〉Γ =

∫
Ω
curl z · ϕ̃dx = 0.

Using (68), we deduce that

∀ϕ̃ ∈ X p′

T (Ω), 〈z × n , ϕ̃〉Γ = 0.

Let now µ be any element of the space W
1− 1

p′ ,p
′
(Γ). So, there

exists an element ϕ̃ of W 1,p′(Ω) such that ϕ̃ = µt on Γ, where
µt is the tangential component of µ on Γ. It is clear that ϕ̃

belongs to X p′

T (Ω) and

〈z × n ,µ〉Γ = 〈z × n ,µt〉Γ = 〈z × n , ϕ̃〉Γ = 0.

This implies that z × n = 0 on Γ which is the last boundary
condition in (62).



ii) Regularity. Now, we suppose that

v ∈W 1,p(Ω) and Ω is of class C 2,1.

Let ξ ∈W 1,p(Ω) given by the first step and z = curl ξ − v .
Observe that

z ∈ X p
N (Ω) ↪→W 1,p(Ω).

This implies that
curl ξ ∈W 1,p(Ω).

Thanks to the regularity resuts for vector fields, we deduce that

ξ ∈W 2,p(Ω)

and satisfies the estimate (64), which finishes the proof.



Remark

i) Note that we can directly prove the uniqueness of the
solution of the problem (62) by using the characterization
of the kernels K p

T (Ω) and K p
N (Ω).

ii) When v belongs only to Lp(Ω), then

(curl ξ − v)× n ∈W − 1
p
,p

(Γ)

but neither
curl ξ × n nor v × n

is defined. However, if v ∈ H p(curl, Ω), then

v × n and curl ξ × n have a sense in W − 1
p
,p

(Γ).



Theorem 4.6 (Normal vector potentials)

u ∈ H p(div, Ω) satisfies:

u · n = 0 on Γ and div u = 0 in Ω, 〈u · n , 1〉Σj
= 0, 0 ≤ j ≤ J,

iff there exists a vector potential ψ in X p(Ω) such that

u = curlψ and divψ = 0 in Ω,

ψ × n = 0 on Γ,

〈ψ · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

This function is unique and moreover, we have:

‖ψ‖W 1,p(Ω) ≤ C‖u ‖Lp(Ω).

Remark : If u ∈ H p
0 (div, Ω) then the condition 〈u · n , 1〉Σj

= 0, 1 ≤ j ≤ J, is

necessary and sufficient for the existence of the vector potential ψ satisfying (69)

and (69). The condition 〈ψ · n , 1〉Γi
= 0, 0 ≤ i ≤ I ensures the uniqueness of ψ.



Idea of the proof

We use the Inf-Sup condition (58) to solve the problem:

Find ξ ∈W 1,p(Ω) such that:

(P)


−∆ ξ = 0 and div ξ = 0 in Ω,

ξ · n = 0, curl ξ × n = ψ0 × n on Γ,

〈ξ · n , 1〉Σj
= 0,

where ψ0 ∈W 1,p(Ω) is the tangential vector potential.

Setting ψ1 = ψ0 − curl ξ, we have

ψ1 ∈ Lp(Ω), 0 = divψ1 ∈ Lp, curlψ1 ∈ Lp(Ω) and ψ1×n = 0 on Γ

Using the regularity results for vector fields, we deduce that ψ1 ∈W 1,p(Ω).

The required vector potential is given by:

ψ = ψ1 −
I∑

i=1

〈ψ1 · n , 1〉Γi
grad qNi



Theorem 4.7 (Inf-Sup Condition in Xp
N )

The following Inf-Sup condition holds: there exists a constant
β > 0, such that

inf
ϕ∈V p′

N (Ω)
ϕ6=0

sup
ξ∈V p

N (Ω)
ξ 6=0

∫
Ω curl ξ · curlϕ dx

‖ξ‖X p
N (Ω)‖ϕ‖X p′

N (Ω)

≥ β. (69)

Proof The proof is very similar to that of Xp
T . Let ϕ be any

function of V p′

N (Ω). Due to the equivalence norm, we can write:

for any ϕ ∈ V p′

N (Ω)

‖ϕ‖
X p′

N (Ω)
≤ C‖curlϕ‖

Lp′ (Ω)
= C sup

g∈Lp(Ω)
g 6=0

∣∣ ∫
Ω curlϕ · g dx

∣∣
‖g‖Lp(Ω)

.



We use now the Helmholtz decomposition

g = ∇χ+ z , where χ ∈W 1,p(Ω) and z ∈ H p(div, Ω)

with
div z = 0 in Ω and z · n = 0 on Γ.

Moreover, we have the estimate

‖∇χ‖Lp(Ω) ≤ C‖g‖Lp(Ω).

The following vector fields

z̃ = z −
J∑
j=1

〈z · n , 1〉Σj g̃rad q
T
j

satisfies

div z̃ = 0 in Ω, z̃ ·n = 0 on Γ and 〈z̃ ·n , 1〉Σj = 0 ∀1 ≤ j ≤ J.

Using the theorem of normal vector potential the rest of the
proof is similar to the Inf-Sup Condtition I.
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